Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{7}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{7}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{7}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{7}\)
\(\Rightarrow\frac{1}{x+2}=-\frac{9}{7}\)
\(\Rightarrow-9\left(x+2\right)=7\)
\(\Rightarrow x+2=-\frac{7}{9}\)
\(\Rightarrow x=-\frac{25}{9}\)
Vậy \(x=-\frac{25}{9}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)
\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)
\(A=\frac{x}{2x+1}\)
Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Rightarrow\frac{1}{2}\left[\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}\right]=\frac{16}{17}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{17}\Rightarrow x+2=17\Rightarrow x=15\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
Ta có:
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{8}{17}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{17}\)
\(\Rightarrow x+2=17\)
\(\Rightarrow x=15\)
Vậy \(x=15\)
A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)
\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)
\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)
X=16
17 - 1= 16
= > x = 16
tk mình nha