Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=0+\frac{1}{4}=\frac{1}{4}\)
\(\Rightarrow x-\frac{1}{3}=\sqrt{\frac{1}{4}}=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Nếu x = 0 => 2^0 + 624 = 5^y => 625 = 5^y => 5^4 = 5^y => y = 4
Nếu x > 0 => 2^x + 624 chẵn mà 5^y lẻ => không có x; y thoả mãn
Vậy x = 0; y = 4
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
a) Từ đề bài suy ra
2^x+1.3^y=(3.2^2)^x
2^x+1.3^y=3^x.(2^2)^x.Vì cách phân tích là duy nhất.
2^x+1=2^2x và 3^y=3^x
x+1=2x;y=x
x=y=1
b) 10^x:5^y=20^y
10^x =20^y.5^y
10^x = (20.5)^y
10^x = 100^y
10^x = 10^2y
x = 2y
Vậy x= 2y
a) 2x+1 . 5y =( 22 . 5)x
=> 2x+1 .5y = 22x .5x
=> 2x+1=22x và 5y= 5x
=>x+1=2x=>x=1
với 5y =5x => y=x
vậy x=y=1
b)15x : 3y =75y
=> (3.5)x :3y = (3.52)y (*)
=> 3x-y .5x = 3y. 52y
=> 3x-y= 3y và 5x=52y
=>x-y= y => x=2y
với 5x= 52y
=> x=2y.
vậy nếu ta chọn y=1 thì x=2
kết luận y=1 x=2
Đơn giản biểu thức
2
Giải phương trình
3
Giải phương trình
ko giải thì b next hộ :(((