Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Gọi biểu thức đó là A
Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
Dựa vài công thức ta có ;
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{19}-\frac{1}{20}\)
\(A=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) Gọi biểu thức đó là S
\(S=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right).....\left(-\frac{2016}{2017}\right)\)
\(S=-\left(\frac{1.2.3.4....2016}{2.3.4.5....2017}\right)=-\left(\frac{1}{2017}\right)=-\frac{1}{2017}\)
Rất tiếc nhưng phần c mink ko biết làm, để mink nghĩ đã
Câu 2 :
a) \(\frac{5}{n+1}\)
Để 5/n+1 là số nguyên thì n + 1 là ước nguyên của 5
n+1=1 => n = 0
n + 1 =5 => n = 4
n+1=-1 => n =-2
n+1 = -5 => n = -6
b) \(\frac{n-6}{n+1}=\frac{n+1-7}{n+1}=1-\frac{7}{n+1}\)
Để biểu thức là số nguyên thì n + 1 là ước của 7
n + 1 = 1 => n= 0
n+1=7=> n =6
n + 1 = -7 => n =-8
n+1=-1 => n= -2
c) \(\frac{2n+7}{n+1}=\frac{2\left(n+1\right)+6}{n+1}=2+\frac{6}{n+1}\)
Để biểu thức là số nguyên thì n+1 là ước của 6
n+1 = | 1 | -1 | 6 | -6 |
n = | 0 | -2 | 5 | -7 |
Từ đó KL giá trị n
CÂU 3 :
b) \(A=\frac{x-1}{x+2}=\frac{x+2-3}{x+2}=1-\frac{2}{x+2}\)
x+2= | 1 | -1 | 2 | -2 |
x = | -1 | -3 | 0 | -4 |
Rồi bạn thử từng x khi nào thấy A = 2 thì chọn nha!!
Ai thấy đúng thì ủng hộ nha !!!
câu 1 :
a) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19+20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{19}+\frac{1}{19}\right)-\frac{1}{20}\)
\(=\frac{1}{2}+0+0+0+...+0-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
b) \(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2017}-1\right)\)
\(=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)...\left(-\frac{2016}{2017}\right)\)
Vì phép nhân có thể rút gọn
Nên \(-1.\frac{-1}{2017}=\frac{1}{2017}\)
Câu 2 :
a) Ta có : \(\frac{5}{n+1}\)
Để \(\frac{5}{n+1}\in Z\Leftrightarrow5⋮n+1\Leftrightarrow n+1\inƯ_{\left(5\right)}=\){ -1; 1; -5; 5 }
Với n + 1 = -1 => n = -1 - 1 = - 2 ( TM )
Với n + 1 = 1 => n = 1 - 1 = 0 ( TM )
Với n + 1 = - 5 => n = - 5 - 1 = - 6 ( TM )
Với n + 1 = 5 => n = 5 - 1 = 4 ( TM )
Vậy Với n \(\in\){ - 2; 1; - 6; 4 } thì 5 \(⋮\)n + 1
Còn câu b nữa tương tự nha
" TM là thỏa mản "
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
1, 4\(^{x+1}\) + 4\(^0\) = 65
\(\Rightarrow\)4\(^{x+1}\) = 65 - 1
\(\Rightarrow\)x + 1 = 64 : 4
\(\Rightarrow\)x + 1 = 16
\(\Rightarrow\)x = 15
2) 10 + 2x = 16\(^{^2}\): 4\(^3\)
\(\Rightarrow\)10 + 2x = 4
\(\Rightarrow\)2x = 4 - 10
\(\Rightarrow\)2x = -6
\(\Rightarrow\)x = -3
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~