Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm mẫu các phần khác tương tự nhé !
\(F=\frac{-11}{x+1}\)hay \(x+1\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
x + 1 | 1 | -1 | 11 | -11 |
x | 0 | -2 | 10 | -12 |
a: A nguyên
=>3x+1 chia hết cho 2-x
=>3x-6+7 chia hết cho x-2
=>x-2 thuộc {1;-1;7;-7}
=>x thuộc {3;1;9;-5}
b: B nguyên
=>8x-4+6 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;2;-2;3;-3;6;-6}
=>x thuộc {1;0;2;-1}
c: C nguyên
=>x-1 chia hết cho 2x+1
=>2x-2 chia hết cho 2x+1
=>2x+1-3 chia hết cho 2x+1
=>2x+1 thuộc {1;-1;3;-3}
=>x thuộc {0;-1;1;-2}
Chứng tỏ rằng các đa thức sau ko phụ thuộc vào biến
a) Ta có: \(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)
\(=6x^2+23x-55-6x^2-23x-21\)
=-74
Vậy: Đa thức A không phụ thuộc vào biến(đpcm)
b) Ta có: \(B=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=-8\)
Vậy: Đa thức B không phụ thuộc vào biến(đpcm)
c) Ta có: \(C=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)
Vậy: Đa thức C không phụ thuộc vào biến(đpcm)
d) Ta có: \(D=x\left(y+z-yz\right)-y\left(z+x-zx\right)+z\left(y-x\right)\)
\(=xy+xz-xyz-yz-xy+xyz+zy-zx\)
=0
Vậy: Đa thức D không phụ thuộc vào biến(đpcm)
Để : \(\frac{3}{x+1}\in Z\) thì 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng ;
n + 1 | -3 | -1 | 1 | 3 |
n | -4 | -2 | 0 | 2 |
cảm ơn bạn nha # Nguyễn Việt Hoàng
bạn giúp mik những câu sau được không
a: \(\Leftrightarrow3x^3-2x^2+15x^2-10x+3x-2+7⋮3x-2\)
\(\Leftrightarrow3x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1\right\}\)
b: \(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49x+49x-44⋮2x^2-7\)
\(\Leftrightarrow2401x^2-1936⋮2x^2-7\)
\(\Leftrightarrow4802x^2-3872⋮2x^2-7\)
\(\Leftrightarrow2x^2-7\inƯ\left(12935\right)\)
\(\Leftrightarrow2x^2-7\in\left\{1;5;13;65;199;995;2587;12935;-1;-5\right\}\)
\(\Leftrightarrow2x^2\in\left\{8;72;2\right\}\)
hay \(x\in\left\{2;-2;6;-6;1;-1\right\}\)