Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị x>0 nguyên thỏa mãn: \(-\frac{7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< -\frac{7}{4} \)
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)
Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)
=> \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .
\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn
a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu
Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)
=> -1 < x < 2
Vậy -1 < x < 2
b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu
Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy x>2 hoặc x < \(\frac{2}{3}\)
a, Vì (x-3).(x+7)>0
Suy ra (x-3) và (x+7) đồng thời khác 0.
Vì (x-3) khác 0
Suy ra x khác 0+3
Suy ra x khác 3
Vì (x+7) khác 0
Suy ra x khác 0-7
Suy ra x khác -7.
Vậy x khác 3 hoặc x khác -7
Để (x - 3)(x + 7) > 0
Th1 : (x - 3) > 0 ; (x + 7) > 0
=> x > 3 ; x > -7
=> x > 3
Th2 : (x - 3) < 0 ; (x + 7) < 0
=> x < 3 ; x < -7
=> x < -7
Vậy (x - 3)(x + 7) > 0 khi x > 3 hoặc x < -7
a) \(x\left(x+4\right)>0\)
\(x>0;x+4>0\) <=> \(x>0\)
\(x< 0;x+4< 0\) <=> \(x< -4\)
Vậy x(x+4)>0
khi x>0
hoặc x<-4
a) x(x +4) >0 <=> x<-4 hay x>0
b) -3<x<7