Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
a) 5x2 ( 3x2 -7x+2)-15x(x-3)
=15x4-35x3+10x2-15x2+45x
=15x4-35x3-5x2+45x
c) (x+3)(x-3)(x-2)(x+1)
=(x2-9)(x2+x-2x-2)
=(x2-9)(x2-x-2)
=x4-x3-2x2-9x2+9x+18
=x4-x3-11x2+9x+18
d)(2x+1)2+(4x-1)2+2(2x+1)(4x+1)
=2x2+4x+1-16x2-8x+1
=2x2+4x+1-16x2-8x+1+16x2-4x+8x-2
=2x2+7
e) (2x2-3x)(5x2-2x+1)-10x2(x+3)
=10x4 -4x3+2x2-15x3+6x2-3 -10x2-30x
=10x4-19x3-2x2-30x-3
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)
Bài 2:
a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)
\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)
\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)
\(=-3x^2+7x-4\)
\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)
=-3-4-7=-14
b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)
\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)
\(=-18x^2y^2-3xy-8\)
\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)
\(=-18-3-8=-29\)