Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2020^10+2/2020^11+2
⇒ 2020A=2020^11+2.2020/2020^11+2
= 1+2.2020−2/2020^11+2
B=2020^11+2/2020^12+2
⇒ 2020B=2020^12+2.2020/2020^12+2
= 1+2.2020−2/2020^12+2
Vì 2020^12+2>2020^11+2
⇒ 2.2020−2/2020^11+2<2.2020−2/2020^12+2
⇒ 2020A<2020B
⇒ A<B
\(\text{Ta có :}\)\(-\frac{4.5+4.11}{8.7-4.3}=\frac{-4\left(5+11\right)}{4\left(2.7-3\right)}=\frac{-16}{24}=\frac{-4}{6}\)
\(\frac{-15.8+10.7}{5.6+20.3}=\frac{-5\left(3.8-2.7\right)}{5.\left(6+2.3\right)}=\frac{-10}{12}=\frac{-5}{6}\)
\(\text{Vì:}\)\(-\frac{4}{6}>\frac{-5}{6}\left(-4>-5\right)\)
\(\text{Nên :}\)\(-\frac{4.5+4.11}{8.7-4.3}>\)\(\frac{-15.8+10.7}{5.6+20.3}\)
\(-\frac{4.5+4.11}{8.7-4.3}=-\frac{4.\left(5+11\right)}{4.\left(14-3\right)}=-\frac{4.16}{4.11}=\frac{-16}{11}\)
\(\frac{-15.8+10.7}{5.6+20.3}=\frac{\left(-5\right).3.8+5.2.7}{5.2.3+2.2.5.3}=\frac{5.\left(-3.8+2.7\right)}{5.2.3.\left(1+2\right)}\)
\(=\frac{5.\left(-10\right)}{5.2.3.3}=\frac{-5}{9}\)
\(\frac{-5}{9}>\frac{-16}{11}\)
(x^2+9)(x+1)(x^2+4)=0
<=> x2+9=0 hoặc x+1=0 hoặc x2+4=0
<=> x=-1
Vậy x=-1
Xét từng TH nha bạn
Th1 : x^2 + 9 = 0 => x^2 = -9 < Loại >
th2 : x^2 + 4 = 0 => x^2 = -4 < Loại >
Th3 : x + 1 = 0 => x = -1
Ta có : \(\frac{x-1}{12}=\frac{3}{x-1}\)
\(\Rightarrow\left(x-1\right).\left(x-1\right)=12.3\)
\(\Rightarrow\left(x-1\right)^2=36\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=6^2\\\left(x-1\right)^2=\left(-6\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
Vậy \(x=7;x=-5\)
\(\frac{x-1}{12}=\frac{3}{x-1}ĐKXĐ\left(x\ne1\right)\)
\(\left(x-1\right)^2=36\)
\(\left(x-1\right)^2=6^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=6\\x-1=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}}\)tm ))
ta có
|x-2| > 0
(x^2-2)^2014 > 0
=> để |x-2|+(x^2-2)^2014=0 thì
\(\hept{\begin{cases}x-2=0\\\left(x^2-2\right)=0\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\x^2=2\end{cases}}\)
=>\(\hept{\begin{cases}x=2\\x=\sqrt{2}\end{cases}}\)
sửa lại chỗ \(x^2=2\)
=>\(x=\pm\sqrt{2}\)