Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\frac{x-3}{x-2}=\frac{\left(x-2\right)-1}{x-2}=1-\frac{1}{x-2}\)
Để \(1-\frac{1}{x-2}\in Z\Rightarrow x-2\inƯ\left(1\right)\Rightarrow x-2\)thuộc 1;-1
+) Với x-2=1 thì \(x=3\)
+) Với x-2=-1 thì \(x=1\)
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
a)Để A là số nguyên thì x-2 chia hết cho x+1
Do đó ta có:
\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)
\(\Rightarrow x+1\inƯ\left(-3\right)\)
Vậy Ư(-3)là:[1,-1,3,-3]
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy x=-4;-2;0;2
b)Để B là số nguyên thì x+4 chia hết cho x-1
Do đó ta có:
\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)
\(\Rightarrow x-1\inƯ\left(5\right)\)
Vậy Ư(5)là:[1,-1,5,-5]
Ta có bảng sau:
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
Vậy x=-4;0;2;6
c) Để \(\frac{2x+7}{x+2}\) là số nguyên
\(\Leftrightarrow2x+7⋮x+2\)
\(\Rightarrow\left(2x+4\right)+3⋮x+2\)
\(\Rightarrow2\left(x+2\right)+3⋮x+2\)
\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)
\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng sau :
x+2 | -3 | -1 | 1 | 3 |
x | -5 | -3 | -1 | 1 |
Vậy \(x\in\left\{-3;-1;1;3\right\}\)
d) Để \(\frac{2x+9}{x+1}\) là số nguyên
\(\Leftrightarrow2x+9⋮x+1\)
\(\Rightarrow\left(2x+2\right)+7⋮x+1\)
\(\Rightarrow2\left(x+1\right)+7⋮x+1\)
\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)
\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng sau :
x+1 | -7 | -1 | 1 | 7 |
x | -8 | -2 | 0 | 6 |
Vậy \(x\in\left\{-8;-2;0;6\right\}\)
Bài 1
2.|x+1|-3=5
2.|x+1| =8
|x+1| =4
=>x+1=4 hoặc x+1=-4
<=>x= 3 hoặc -5
Bài 3
A=2/n-1
Để A có giá trị nguyên thì n là
2 phải chia hết cho n-1
U(2)={1,2,-1,-2}
Vậy A là số nguyên khi n=2;3;0;-1
k mk nha. Chúc bạn học giỏi
Thank you
bài 1 :
\(2\cdot|x+1|-3=5\)
\(2\cdot|x+1|=5+3\)
\(2\cdot|x+1|=8\)
\(|x+1|=8\div2\)
\(|x+1|=4\)
\(x=4-3\)
\(x=3\Rightarrow|x|=3\)
bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)
TH1:
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)
\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)
\(\Rightarrow n=5\)
TH2
\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)
\(\Rightarrow4=\frac{4-1}{1+2}=3\)
\(\Rightarrow n=3\)
\(n\in\left\{5;3\right\}\left(n\in Z\right)\)
Bài 3 có 2 trường hợp là \(A=1\)và \(A=2\)
TH1:
\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)
\(1=\frac{2}{2+1}=3\)
\(\Rightarrow n=3\)
TH2 :
\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)
\(2=\frac{2}{1+1}=2\)
\(\Rightarrow n=2\)
vậy \(\Rightarrow n\in\left\{3;2\right\}\)
a) x \(\in\)B3-2
b)\(\left(x-1\right)\in U_{\left(5\right)}=\left\{-5,-1,1,5\right\}\)=> x\(\in\left\{-4,0,2,6\right\}\)
c) \(=1-\frac{3}{x-4}nguyen\Leftrightarrow\left(x-4\right)\in U_3=\left\{-3,-1,1,3\right\}\)
=>x\(\in\left\{1,3,5,7\right\}\)
a)Để A nguyên thì x+2 chia hết cho 3 => x+2 thuộc B(3)={0;3;6;9;...} => x{-2;1;4;7;...}
b) Để B nguyên thì x-1 thuộc Ư(5)={1;-1;5;-5}
Th1 x-1=1 => x=2
Th2 x-1=-1 => x =0
Th3 x-1=5 => x=6
Th4 x-1=-5 => x= -4
Vậy x thuộc {2;0;6;-4}
c)
\(C=\frac{x-7}{x-4}=\frac{x-4-3}{x-4}=\frac{x-4}{x-4}-\)\(\frac{3}{x-4}\)\(=1-\frac{3}{x-4}\)
Vì 1 thuộc Z nên để C thuộc Z thì 3/x-4 thuộc Z
=> x-4 thuộc Ước của 3={1;-1;3;-3}
Th1 x-4=1 => x=5
Th2 x-4=-1 => x=3
Th3 x-4=3 => x=7
Th4 x-4=-3 => x=1
Vậy x thuộc {5;3;7;1}
Để A nguyên thì x + 15 chia hết x + 1
<=> ( x + 1 ) + 14 chia hết x + 1
=> 14 chia hết x + 1
=> x + 1 thuộc Ư(14)
=> bạn tự giải đc
Để A có giá trị nguyên
thì 3\(⋮\)(x-1)
mà xeZ nên x-1eZ
x-1e{3;-3}
xe{4;-2}
Câu 1:
Để A có giá trị nguyên thì \(\frac{x+2}{3}\) nguyên
=>x+2 chia hết cho 3
=>x chia 3 dư 1
=>x có dạng 3k+1
Câu 2:
Để B có giá trị nguyên thì \(\frac{5}{x-1}\) nguyên
=>5 chia hết cho x-1
=>x-1\(\in\){-5;-1;1;5}
=>x\(\in\){-4;0;2;6}
Câu 3:
Để C có giá trị nguyên thì \(\frac{x-7}{x-4}\) nguyên
=>x-7 chia hết cho x-4
=>x-4-3 chia hết cho x-4
=>3 chia hết cho x-4
=>x-4\(\in\){-3;-1;1;3}
=>x\(\in\){1;3;5;7}
Để B thuộc Z
=>5 chia hết x-1
=>x-1 thuộc Ư(5)
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
\(C=\frac{x-7}{x-4}=\frac{x-4-3}{x-4}=\frac{x-4}{x-4}-\frac{3}{x-4}=1-\frac{3}{x-4}\in Z\)
=>3 chia hết x-4
=>x-4 thuộc Ư(3)
=>x-4 thuộc {1;-1;3;-3}
=>x thuộc {5;3;7;1}
Để \(A=\frac{5}{x-2}\)có giá trị là 1 số nguyên thì:
\(5⋮x-2\)
Vì \(x\in Z\Rightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
Vậy \(x\in\left\{3;-1;7;-3\right\}\)
Để \(B=\frac{x+2}{x-3}\)có giá trị là 1 số nguyên thì:
\(x+2⋮x-3\)
=> \(\left(x-3\right)+5⋮x-3\)
=> \(5⋮x-3\)
Sau đó tiếp tục lý luận và lập bảng tìm trường hợp như của x trong ý a.
Ý c thì mình đang bị mung lung tí '-'