Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1L
a, Ta có: \(18\inƯ\left(x-2\right)\)
=> x - 2 = 18.k ( k \(\inℤ\))
=> x = 18.k + 2
Vậy: x =18.k + 2
b, Ta có: \(x+1\inƯ\left(x^2+x+3\right)\)
\(\Rightarrow x^2+x+3⋮x+1\)
\(\Rightarrow x\left(x+1\right)+3⋮x+1\)
=> 3 \(⋮\)x + 1 ( vì: x(x+1) \(⋮\)x+1 )
=> \(x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy:......
Bài 2:
a, Ta có: ( x+3 ) ( x + y - 5 ) = 7
=> x + 3 và x + y - 5 \(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng:
x+3 | -7 | -1 | 1 | 7 |
x+y-5 | -1 | -7 | 7 | 1 |
x | -10 ( loại vì x là STN ) | -4 ( loại vì x là STN ) | -2 ( loại vì x là STN ) | 4 |
y | 14 | 2 | 14 | 2 |
Vậy có 1 cặp ( x;y ) cần tìm như trên bảng.
b, Ta có: xy + y +x = 10
=> x(y+1) = 10 - y
=> x = (10-y) / (y+1)
VÌ: x là STN => (10-y) / (y+1) là STN
=> 10 - y \(⋮\)y + 1
=> y - 10 \(⋮\)y + 1
=> ( y + 1 ) - 11 \(⋮\)y + 1
=> 11 \(⋮\)y + 1 ( vì y + 1 \(⋮\)y + 1 )
=> y + 1 \(\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow y\in\left\{-12;-2;0;10\right\}\)Vì y là STN nên y = 0 hoặc y = 10
với y = 0 => x = 10
với y = 10 => x = 0
Vậy:....
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)
=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)
=> \(15-x+x-12-5+x=7\)
=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)
=> \(\left(15-12-5\right)-7=3x\)
=> \(3x=-2-7\)
=> \(3x=-9\)
=> \(x=\frac{-9}{3}=-3\)
b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)
=> \(x-57-42-23-x=13-47+25-32+x\)
=> \(x-x+x=13-47+25-32+57+42+23\)
=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)
=> \(x=36-104+82-74\)
=> \(x=-60\)
d/ \(\left(x-3\right)\left(2y+1\right)=7\)
Vì 7 là số nguyên tố nên ta có 2 trường hợp:
TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).
TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).
Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).
2, có 2 th
th1: x+5>0 và 3x-12>0
th2: x+5<0 và 3x-12<0
bn tự giải tiếp nha phần sau dễ
mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi
Ngu cũng được chẳng cần Nguyễn Minh chia sẻ.
Không giúp gì được cho người ta thì đừng có vào mục trả lời,
xỏ xiên người ta nữa.
Mình hơi bận nên chỉ cách làm thôi nhé, moong bạn hiểu)
Bài 1:
=(1 - 2) + (3 - 4) + (5 - 6)+ ...+(801 - 802)+(803 - 804)
= (-1) + (-1) + (-1) + ... + (-1)
Bạn đi tìm số cặp sẽ ra số các số hạng -1 nên nhân -1 với số cặp sẽ ra thôi! (-1). số số (-1)
Bài 2:
a) -7 là bội của x + 8
=> x+8 thuộc B(-7) = {1; 2; -1; -2}
(Lập bảng)(Chết, vẽ thiếu!)
x + 8 | 1 | 2 | 1 | -2 |
x |
Tương tự các câu sau.
C) x2 = x .x
Ta có: x . x . 3x + 4 = 5x + 4
(Còn đâu thì chịu, mình chỉ giúp đc có vận thôi, thông cảm nhé!)
\(1,a,\frac{x}{10}-\frac{1}{y}=\frac{3}{10}=>\frac{x}{10}-\frac{3}{10}=\frac{1}{y}=>\frac{x-3}{10}=\frac{1}{y}=>\left(x-3\right).y=1.10=10\)
bn liệt kê bảng các ước của 10 ra là đc (chỉ lấy ước tự nhiên)
câu sau tương tự
\(2,\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Do vai trò của x,y,z như nhau nên giả sử \(1\le x\le y\le z\)
\(=>\frac{1}{x}\ge\frac{1}{y}\ge\frac{1}{z}=>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}=>1\le\frac{3}{x}=>x\le3=>x\in\left\{1;2;3\right\}\)
\(\left(+\right)x=1=>\frac{1}{y}+\frac{1}{z}=0\) (vô lí)
\(\left(+\right)x=2=>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}=>\frac{y+z}{yx}=\frac{1}{2}=>2\left(y+z\right)=yz=>2y+2z=yz\)
\(=>2y+2z-yz=0=>2y-yz+2z=0=>y\left(2-z\right)+2z-4=-4\)
\(=>y\left(2-z\right)-4+2x=-4=>y\left(2-z\right)-2\left(2-z\right)=-4=>\left(y-2\right)\left(2-z\right)=-4\)
Tìm đc (y;z)=(4;4);(3;6)
\(\left(+\right)x=3=>\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)
Nếu \(y=3=>z=3\)
Nếu \(y\ge4=>\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
Vậy (x;y;z) là (2;4;4);(2;3;6);(3;3;3) và các hoán vị của chúng
2 câu a và c, rất dễ,bn vận dụng theo phương pháp sử dụng bất đẳng thức như mk vừa làm là đc
a: \(x\in B\left(5\right)\)
mà x<10
nên \(x\in\left\{...;0;5\right\}\)
b: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
c: \(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{3;1;7;-3\right\}\)
d: \(\Leftrightarrow x+1\in\left\{1;-1;10;-10;2;-2;5;-5\right\}\)
hay \(x\in\left\{0;-2;9;-11;1;-3;4;-6\right\}\)
e: \(\Leftrightarrow x^2+1\in\left\{1;2;5;10\right\}\)
hay \(x\in\left\{0;1;-1;3;-3\right\}\)