Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-......-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
\(\frac{1}{5}+\frac{1}{x+1}=\frac{13}{90}\)
\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}=\frac{1}{18}\)
x + 1 = 18
x = 18 - 1 = 17
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)
=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)
=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)
=>\(\frac{2}{3}-\frac{4}{3}x=5\)
=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)
b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)
1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)
2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)
\(\left|x+\frac{11}{2}\right|>5,5\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)
3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)
vay ....
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
a.
\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)
TH1:
\(x+\frac{1}{2}=0\)
\(x=-\frac{1}{2}\)
TH2:
\(x-\frac{3}{4}=0\)
\(x=\frac{3}{4}\)
Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)
b.
\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
TH1:
\(\frac{1}{2}x-3=0\)
\(\frac{1}{2}x=3\)
\(x=3\div\frac{1}{2}\)
\(x=3\times2\)
\(x=6\)
TH2:
\(\frac{2}{3}x+\frac{1}{2}=0\)
\(\frac{2}{3}x=-\frac{1}{2}\)
\(x=-\frac{1}{2}\div\frac{2}{3}\)
\(x=-\frac{1}{2}\times\frac{3}{2}\)
\(x=-\frac{3}{4}\)
Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)
c.
\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)
\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)
\(-\frac{4}{3}x=\frac{13}{3}\)
\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)
\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)
\(x=-\frac{13}{4}\)
d.
\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)
\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)
\(x=5\)
\(\left(x+\frac{1}{2}\right)\left(x-\frac{3}{4}\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)
a, => |5/3.x| = 1/6
=> 5/3.x = -1/6 hoặc 5/3.x = 1/6
=> x = -1/10 hoặc x = 1/10
Tk mk nha
\(\text{Ta có: }\frac{1}{5.6}+\frac{1}{6.7}+.....+\frac{1}{x.\left(x+1\right)}=\frac{13}{90}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{13}{90}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)
=> x + 1 = 18
=> x = 17