Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2, có 2 th
th1: x+5>0 và 3x-12>0
th2: x+5<0 và 3x-12<0
bn tự giải tiếp nha phần sau dễ
mk biết làm bài 2 rồi nhưng bài 3 mk chưa biết làm, bạn chỉ cầ làm kĩ bài 3 cho mk thôi
b) /2x-5/=x+1
xét 2x-5>=0, tức là x>=3, khi đó:/2x-5/=2x-5
=>2x-5=x+1
=>5+1=2x-x
=>x=6(t/m)
xét 2x-5<0=>x<2, khi đó: /2x-5/=5-2x
=>5-2x=x+1
=>5-1=x+2x
=>4=3x
=>x=4:3(loiaj vì 4 ko chia hết cho 3)
vậy x=6
c/ /5x-2/<=16
=>-16<=5-2x<=16
=>-2<=x<=3
=>x thuôc ....(tự làm tiếp)
tau ko đồng tính vs việc làm cuả mi, bài chi cụng hỏi
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
a, Vì \(\left|3x-6\right|\ge0\) với mọi x
\(\left(x+2\right)^2\ge0\) với mọi x
=> \(\left|3x-6\right|+\left(x+2\right)^2\ge0\)
mà \(\left|3x-6\right|+\left(x+2\right)^2=0\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}3x-6=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)
a) /3x-6/+(x+2)^2=0
vì 3x-6 lớn hơn hoặc bằng 0 Với mọi x thuộc Z
(x+2)^2 lớn hơn hoặc bằng 0 Với mọi x thuộc Z
nên /3x-6/+(x+2)^2=0
khi 3x-6=0 suy ra x=2
(x+2)^2=0 suy ra x=-2
vậy x=2 hoặc x=-2
a) \(\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\\left|y^2-9\right|^{2017}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=\left\{-3;3\right\}\end{cases}}\)
b) \(x^2-xy+y=10\)
\(x^2-1-\left(xy-y\right)=9\)
\(\left(x-1\right)\left(x+1\right)-y\left(x-1\right)=9\)
\(\left(x-1\right)\left(x+1-y\right)=9\)
Ta có bảng sau :
x - 1 | 1 | -1 | 3 | -3 | 9 | -9 |
x + 1 - y | 9 | -9 | 3 | -3 | 1 | -1 |
Còn lại cậu tính được x từ dòng 1 thì thay vào dòng 2 rồi tìm y nha .
a, \(\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}=0\)
Vì \(\left(x-2\right)^{2016}\ge0\forall x\) và \(\left|y^2-9\right|\ge0\forall y\Rightarrow\left|y^2-9\right|^{2017}\ge0\)
\(\Rightarrow\left(x-2\right)^{2016}+\left|y^2-9\right|^{2017}\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2016}=0\\\left|y^2-9\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}}\) \(\Rightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}\Rightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=-3\end{cases}}\end{cases}}}\)
=> x=2; y=3 hoặc y = -3
a) x + 45 = 2x + 10
=> x - 2x = 10 - 45
=> -x = -35
=> x = 35
b) x(x + 3)(x + 4) = 0
=> x = 0
hoặc x + 3 = 0
hoặc x + 4 = 0
=> x = 0
hoặc x = -3
hoặc x = -4
c) (x - 1)(x2 + 1) = 0
=> \(\orbr{\begin{cases}x-1=0\\x^2+1=0\left(ktm\right)\end{cases}}\)
=> x = 1
a) (x - 2)(7 - x) > 0 nên x - 2 và 7 - x cùng dấu
TH1 :\(\hept{\begin{cases}x-2>0\\7-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Rightarrow}x\in\left\{3;4;5;6\right\}}\)
TH2 :\(\hept{\begin{cases}x-2< 0\\7-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>7\end{cases}}}\)=> Ko có giá trị x thỏa mãn
Vậy x = 3 ; 4 ; 5 ; 6
b) (x2 - 13)(x2 - 17) < 0 => x2 - 13 và x2 - 17 khác dấu mà x2 - 13 > x2 - 17 (vì -13 > -17)
\(\Rightarrow\hept{\begin{cases}x^2-13>0\\x^2-17< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>13\\x^2< 17\end{cases}\Rightarrow}x^2=16\Rightarrow x\in\left\{-4;4\right\}}\)
Vậy x = -4 ; 4
c)\(\left|6x-3\right|=15\Rightarrow\orbr{\begin{cases}6x-3=15\\6x-3=-15\end{cases}\Rightarrow\orbr{\begin{cases}6x=18\\6x=-12\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy x = -2 ; 3
d)\(\left|7x-2\right|\le19\Rightarrow-19\le7x-2\le19\Rightarrow-17\le7x\le21\Rightarrow-2\frac{3}{7}\le x\le3\)
\(x\in Z\Rightarrow x=-2;-1;0;1;2;3\)
\(\left|2x\right|+2x=0\)
\(\Rightarrow\left|2x\right|=-2x\)
\(\Rightarrow2x\le0\)
\(\Rightarrow x\le0\)
Vậy \(x\le0\)
\(\left(x-1\right).\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
\(\left|x-3\right|+x-3=0\)
\(\left|x-3\right|=-x+3\)
\(\left|x-3\right|=-\left(x-3\right)\)
\(\Rightarrow x-3\le0\)
\(\Rightarrow x\le3\)
Vậy \(x\le3\)
\(\left(x+1\right)^3=\left(x+1\right)^5\)
\(\left(x+1\right)^5-\left(x+1\right)^3=0\)
\(\left(x+1\right)^3.\left[\left(x+1\right)^2-1\right]=0\)
\(\orbr{\begin{cases}\left(x+1\right)^3=0\\\left(x+1\right)^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)hoặc \(x=-2\)
Vậy \(x\in\left\{-1;0;-2\right\}\)
\(\left(x-2\right)^3=2^9\)
\(\left(x-2\right)^3=\left(2^3\right)^3\)
\(\Rightarrow x-2=2^3\)
\(x=8+2\)
\(x=10\)
Vậy \(x=10\)
Câu 6 tương tự câu 4
Tham khảo nhé~
P/S: nên chia nhỏ đăng thành nhiều bài khác nhau
x2 - 7x + 10 = 0=>x2-2x=5x+10=0=>x.(x-2)-5.(x-2)=0=>(x-2)(x-5)=0=>x=2 hoặc x=5Đọc dc thì đọcbai toan nay kho