Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với x = 1 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot1+2}{1-3}=\frac{5}{-2}=\frac{-5}{2}\)
Với x = 2 thì \(A=\frac{3x+2}{x-3}=\frac{3\cdot2+2}{2-3}=\frac{8}{-1}=-\frac{8}{1}=-8\)
Với x =\(\frac{5}{2}\)thì : \(A=\frac{3x+2}{x-3}=\frac{3\cdot\frac{5}{2}+2}{\frac{5}{2}-3}=\frac{\frac{15}{2}+2}{\frac{5}{2}-3}=\frac{\frac{19}{2}}{-\frac{1}{2}}=\frac{19}{2}\cdot(-2)=\frac{19}{1}\cdot(-1)=-19\)
b, Ta có : \(\frac{3x+2}{x-3}=\frac{3x-9+11}{x-3}=\frac{3(x-3)+11}{x-3}=3+\frac{11}{x-3}\)
\(\Leftrightarrow11⋮x-3\Leftrightarrow x-3\inƯ(11)=\left\{\pm1;\pm11\right\}\)
Lập bảng :
x - 3 | 1 | -1 | 11 | -11 |
x | 4 | 2 | 14 | -8 |
c,Để suy nghĩ đã
Làm tiếp :v
c, \(B=\frac{x^2+3x-7}{x+3}=\frac{x(x+3)-7}{x+3}=x-\frac{7}{x+3}\)
\(\Rightarrow7⋮x+3\Leftrightarrow x+3\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Lập bảng :
x + 3 | 1 | -1 | 7 | -7 |
x | -2 | -4 | 4 | -10 |
d, Tương tự
Làm câu a,b thôi nha !
a)Tính A khi x=1;x=2;x=5/2
x=1
Thay x vào biểu thức A, ta có:
\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)
x=2
Thay x vào biểu thức A ta có:
\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)
x=5/2
Thay x vào biểu thức A ta có:
\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)
b)Tìm x thuộc Z để A là số nguyên:
\(A=\frac{3x+2}{x-3}\)
Để A là số nguyên thì:
=>\(3x+2⋮x-3\)
\(\Rightarrow3x-9+11⋮x-3\)
\(\Rightarrow3\left(x-3\right)+11⋮x-3\)
\(\Rightarrow11⋮x-3\)
\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)
Xét trường hợp
\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)
Vậy A là số nguyên thì
\(x\inƯ\left(4;14\right)\)
Các bài còn lại làm tương tự !
(x^2+4)^2=x^4+8x^2+16
MS=(x^2+4)^2-4x(x^2+4)=(x^2+4)(x^2-4x+4)=(x^2+4)(x-2)^2
ĐK x khác 2
A=(x+2)/(x-2)=1+4/(x-2)
(x-2)= Uocs (4)
hết
Ta có :
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
để A nguyên thì \(\frac{4}{\sqrt{x}-3}\)nguyên
\(\Rightarrow\)4 \(⋮\)\(\sqrt{x}-3\)
\(\Rightarrow\)\(\sqrt{x}-3\)\(\in\)Ư ( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }
Lập bảng ta có :
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -7 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -4 |
x | 16 | 4 | 25 | 1 | 49 | \(\varnothing\) |
Vậy ...
a) \(\frac{x^2+x+3}{x+1}=\frac{x\left(x+1\right)+3}{x+1}=x+\frac{3}{x+1}\)
x là số nguyên nên để \(\frac{x^2+x+3}{x+1}\) nguyên thì \(\frac{3}{x+1}\) nguyên => 3 chia hết cho x+ 1
=> x +1 \(\in\)Ư(3) = {-3;-1;1;3}
+) x+ 1 = -3 => x = -4
+) x+ 1= -1 => x = -2
+) x+ 1 = 1 => x = 0
+) x + 1 = 3 => x = 2
Vậy...
b) x + 2xy + y = 0
=> x(1 + 2y) = -y . Vì y nguyên nên 1 + 2y khác 0 ( Do nếu 1 + 2y = 0 thì y = -1/2 không phải là số nguyên)
=> x = \(\frac{-y}{2y+1}\)
Để x nguyên thì y phải chia hết cho 2y + 1
=> 2y chia hết cho 2y + 1
Mà 2y + 1 luôn chia hết cho 2y + 1 nên hiệu (2y + 1) - 2y chia hết cho 2y + 1
=> 1 chia hết cho 2y + 1 => 2y + 1 \(\in\)Ư(1) = {-1;1}
+) Nếu 2y + 1 = 1 => y = 0
+) Nếu 2y + 1 = -1 => y = -1
Thử lại: y = 0 => x = 0 ( Chọn)
y = -1 => x = -1 ( Chọn)
Vậy (x;y) = (0;0) hoặc (-1;-1)