K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

Ta có: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\) (1)

Xét vế trái ta có:

\(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x\)

\(=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(=10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)+2x\)

\(=10.\left(1-\frac{1}{50}\right)+2x\)

\(=10.\frac{49}{50}+2x\)

\(=\frac{49}{5}+2x\) (2)

Xét vế phải ta có:

\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)-7x\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)-7x\)

\(=2.\left(1-\frac{1}{49}\right)-7x\)

\(=2.\frac{48}{49}-7x\)

\(=\frac{96}{49}-7x\) (3)

Từ (1), (2) và (3) => \(\frac{49}{5}+2x=\frac{96}{49}-7x\)

\(\Rightarrow2x+7x=\frac{96}{49}-\frac{49}{5}\)

\(\Rightarrow9x=\frac{480}{245}-\frac{2401}{245}\)

\(\Rightarrow9x=-\frac{1921}{245}\)

\(\Rightarrow x=-\frac{1921}{245}:9=-\frac{1921}{2205}\)

Vậy \(x=-\frac{1921}{2205}\)

Chúc bạn học tốt!vui

9 tháng 7 2016

Ta có:\(\left(10-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+...+\frac{10}{49}-\frac{10}{50}\right)+2x=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{47}-\frac{2}{49}\right)-7x\)

          \(\left(10-\frac{10}{50}\right)+2x=\left(2-\frac{2}{49}\right)-7x\)

           \(\frac{49}{5}+2x=\frac{96}{49}-7x\)

            \(7x+2x=\frac{96}{49}-\frac{49}{5}\)

            \(9x=-\frac{1921}{245}\)

            \(x=-\frac{1921}{245}:9\)

            \(x=-\frac{1921}{2205}\)

Vậy \(x=-\frac{1921}{2205}\)

\(\Leftrightarrow2x+10\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{47\cdot49}\right)-7x\)

\(\Leftrightarrow2x+10\cdot\dfrac{49}{50}=2\left(1-\dfrac{1}{49}\right)-7x\)

\(\Leftrightarrow9x=-\dfrac{1921}{245}\)

hay x=-1921/2205

18 tháng 6 2015

\(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{x.\left(x+1\right)}=\frac{11}{4}\)

\(3.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{11}{4}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{11}{4}\)

\(3.\left(1-\frac{1}{x+1}\right)=\frac{11}{4}\)

\(1-\frac{1}{x+1}=\frac{11}{4}:3=\frac{11}{12}\)

\(\frac{1}{x+1}=1-\frac{11}{12}=\frac{1}{12}\)

\(\Rightarrow x+1=12\)

\(\Rightarrow x=12-1\)

\(\Rightarrow x=11\)

26 tháng 6 2019

a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

=\(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)

=\(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

=\(1-\frac{1}{100!}< 1\)

\(\Rightarrow\)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)

b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

=\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

=\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)=\(1+1-\frac{1}{99}-\frac{1}{100}\)

=\(2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\Rightarrow\)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

21 tháng 5 2017

Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+\frac{1}{4.6}+...+\frac{1}{2013.2015}+\frac{1}{2014.2016}< \frac{3}{4}\)

  \(\Leftrightarrow A=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2014.2016}\right)\)

 \(\Leftrightarrow A=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2014}-\frac{1}{2016}\right)\)

\(\Leftrightarrow A=\left(1-\frac{1}{2015}\right)+\left(\frac{1}{2}-\frac{1}{2016}\right)\)

 \(\Leftrightarrow A=\frac{2014}{2015}+\frac{1007}{2016}\)

   \(\Leftrightarrow A=1,5\)

          Đổi \(\frac{3}{4}=0,75\)

                Vì 0,75 < 1,5

Nên ko thể CM  

21 tháng 5 2017

Bài này mà cũng hỏi thì đừng có thi nữa. đợi vài ngày sau có đáp án nhé.