Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-11x^2+30x=0\)
\(\left(x-6\right).\left(x-5\right).x=0\)
\(=>\orbr{\begin{cases}x-6=0\\x-5=0,x=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=5,x=0\end{cases}}\)
P/S: mk mới lớp 7 sai sót mong bỏ qua
\(8x^2+30x+7=0\)
\(8x^2+28x+2x+7=0\)
\(2x.\left(4x+1\right)+7.\left(4x+1\right)=0\)
\(\left(2x+7\right).\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=-7\\4x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
vậy ....
P/S sorry mk làm hơi lâu :)__chờ tí làm câu a cho
b) 8x2 + 30x + 7 = 0
8x2 + 16x + 14x + 7 = 0
8x.(x+2) + 7.(x+2) = 0
(x+2).(8x+7) = 0
..
bn tự làm tiếp nhé! ^-^
c) x3 - 11x2 + 30x = 0
x.(x2 - 11x +30) = 0
\(x.\left(x^2-5x-6x+30\right)=0.\)
x.[ x.(x-5) - 6.(x-5) ] = 0
x.(x-5).(x-6) = 0
...
\(x^2+3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}}\)
\(8x^2+30x+7=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)\left(x+\frac{7}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x+\frac{7}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=-\frac{7}{2}\end{cases}}}\)
\(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)hoặc \(x=0\)
\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x-2\right)\left(x+6\right)\)
\(x^4-30x^2+31x-30=0\)
\(\left(x^4+x\right)-30\left(x^2-x+1\right)=0\)
\(x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\left(x^2-x+1\right)\left[x\left(x+1\right)-30\right]=0\)
Ta có: \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+x-30=0\left(x^2-x+1\ne0\right)\)
\(\left(x^2-5x\right)+\left(6x-30\right)=0\)
\(x\left(x-5\right)+6\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=5\\x=-6\end{cases}}\)
a,\(15x^3y^4-20x^4y^3+30x^3y^3\)
=\(5x^3y^3\left(3y-4x+6\right)\)
b,\(x^2+10xy+25y^2\)
=\(x^2+2.x.5.y+\left(5y\right)^2\)
=\(\left(x+5y\right)^2\)
c,\(x^2-2xy+y^2-9z^2\)
=\(\left(x^2-2xy+y^2\right)-\left(3z\right)^2\)
=\(\left(x-y\right)^2-\left(3z\right)^2\)
=\(\left(x-y+3z\right)\left(x-y-3z\right)\)
chúc bn hok tốt
\(30x-15x^2-0\)
\(\Leftrightarrow15x\left(2-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}15x=0\\2-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)