K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

ta có :

 4160 chia liên tục cho 4 được 9 lần 

mà 9 - 3 = 6 . vậy 2 lần x = 6

x = 6 : 2 =  3 

nhé !

dễ

Bạn tự suy nghĩ cách làm nhé !

\(4^x+4^{x+3}=4160\)

\(x=3\)

16 tháng 9 2016

\(4^x+4^{x+3}=4160\)

\(4^x\times\left(1+4^3\right)=4160\)

\(4^x\times\left(1+64\right)=4160\)

\(4^x\times65=4160\)

\(4^x=\frac{4160}{65}\)

\(4^x=64\)

\(4^x=4^3\)

\(x=3\)

16 tháng 9 2016

\(4^x+4^{x+3}=4160\)

\(\Rightarrow4^x+4^x.4^3=4160\)

\(\Rightarrow4^x.\left(1+4^3\right)=4160\)

\(\Rightarrow4^x.65=4160\)

\(\Rightarrow4^x=64\)

\(\Rightarrow4^x=4^3\)

\(\Rightarrow x=3\)

Vậy \(x=3\)

24 tháng 9 2017

\(4^{x+3}+4^x=4160\)

\(\Rightarrow4^x.4^3+4^x=4160\)

\(\Rightarrow4^x.\left(4^3+1\right)=4160\)

\(\Rightarrow4^x.65=4160\)

\(\Rightarrow4^x=4160:65\)

\(\Rightarrow4^x=64\)

\(\Rightarrow4^x=4^3\)

\(\Rightarrow x=3\)

24 tháng 9 2017

\(4^{x+3}+4^x=4160\)

\(\left(4^x\cdot4^3\right)+4^x=4160\)

\(4^x\cdot\left(4^3+1\right)=4160\)

\(4^x\cdot\left(64+1\right)=4160\)

\(4^x\cdot65=4160\)

\(4^x=4160:65\)

\(4^x=64\)

\(\Rightarrow4^x=4^3\)

\(\Rightarrow x=3\)

Thưa toàn thể quý vị, chào mừng các bạn đến đây

6 tháng 9 2014

4^x*1+4^x*4^3=4160

4^x*1+4^x*64=4160

4^x*{1+64}=4160

4^x*65=4160

4^x=4160:65

4^x=64

4^x=4^3

x=3

9 tháng 8 2014

Ta có:

4x+4x+3=4160

4x+4x64=4160

4x.65=4160

Còn lại tự làm nhé

 

15 tháng 8 2016

a) theo t/c dãy tỉ số = nhau ta có:

\(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}=\frac{2x+3y-5z}{6-12-35}\)=\(\frac{82}{-41}=-2\)

 => x = -6; y= 8; z= -14

b) từ 5x=6y  và 3y=4z => \(\frac{x}{6}=\frac{y}{5};\frac{y}{4}=\frac{z}{3}\)  => \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)

ta có \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=\frac{x^2-y^2+z^2}{24^2-20^2+15^2}\)=\(\frac{401}{401}=1\)

 =>  \(x=24;y=20;z=15\)

15 tháng 8 2016

a/ \(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}=\frac{2x+3y-5z}{6+\left(-12\right)-35}=\frac{82}{-41}=-2\)

Khi đó:\(\frac{2x}{6}=-2\Rightarrow x=-6;\frac{3y}{-12}=-2\Rightarrow y=8;\frac{5z}{35}=-2\Rightarrow z=-12\)

b/\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{24}=\frac{y}{20};3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)

Đặt\(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=k\Rightarrow\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=k^2\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=\frac{x^2-y^2+z^2}{576-400+225}=\frac{401}{401}=1=k^2\Rightarrow k\in\left\{1;-1\right\}\)

Khi \(k=-1\)thì: \(\frac{x}{24}=-1\Rightarrow x=-24;\frac{y}{20}=-1\Rightarrow y=-20;\frac{z}{15}=-1\Rightarrow z=-15\)

Khi \(k=1\)thì: \(\frac{x}{24}=1\Rightarrow x=24;\frac{y}{20}=1\Rightarrow y=20;\frac{z}{15}=1\Rightarrow z=15\)

c)\(\frac{3x}{2}=\frac{2y}{3}=\frac{4z}{5}\Rightarrow\frac{3x}{24}=\frac{2y}{36}=\frac{4z}{60}\Rightarrow\frac{x}{8}=\frac{y}{18}=\frac{z}{15}\)

Áp dụng tính chất của tỉ lệ thức ta có: \(\frac{x}{8}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{8+18-15}=\frac{44}{11}=4\)

khi đó:\(\frac{x}{8}=4\Rightarrow x=32;\frac{y}{18}=4\Rightarrow y=72;\frac{z}{15}=4\Rightarrow z=60\)

9 tháng 9 2020

a) Ta có : S = 4 + 42 + 43 + ... + 490

=> 4S = 42 + 43 + 44 + ... + 491

=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)

=> 3S = 491 - 4

=> S = \(\frac{4^{91}-4}{3}\)

b) Khi đó 3S + 4 = 4x + 10

<=> 491 - 4 + 4 = 4x + 10

=> 4x + 10  491

=> x + 10 = 91

=> x = 81

Vậy x = 81

9 tháng 9 2020

S = 4 + 42 + 43 + ... + 490

Chứng minh chia hết cho 5

S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )

    = 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )

    = 4.5 + 43.5 + ... + 489.5

    = 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )

Chứng minh chia hết cho 21

S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )

= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )

= 4.21 + 44.21 + ... + 488.21

= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )

Tính S

S = 4 + 42 + 43 + ... + 490

4S = 4( 4 + 42 + 43 + ... + 490 )

     = 42 + 43 + 44 + ... + 491

4S - S = 3S

= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )

= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490 

= 491 - 4

\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)

Tìm x

3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )

<=> 491 - 4 + 4 = 4x+10

<=> 491 = 4x+10

<=> 91 = x + 10

<=> x = 81

10 tháng 9 2018

1) a) Ta có \(\left(x-2\right)^2\ge0\)

\(\left(y+3\right)^4\ge0\)

\(\left(z+4\right)^6\ge0\) 

mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)

nên \(x-2=0\Rightarrow x=2\)

\(y+3=0\Rightarrow y=-3\)

\(z+4=0\Rightarrow z=-4\)

b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)

Do đó \(x+y+z=-3,9\)

hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)

giải tìm ra y thế vào lại để tìm x,z

2) 

a)

\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)

\(=-\frac{24}{12}=-2\)

b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)

\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)

\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)

\(S=\frac{2^{100}-1}{2^{100}}\)

Ta có :  \(\left(x-2\right)^2\ge0\forall x\)

            \(\left(y+3\right)^4\ge0\forall y\)

             \(\left(z+4\right)^2\ge0\forall z\)

Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0

Nên : pt <=> x - 2 = 0 

                    y + 3 = 0 

                    z + 4 = 0 

            <=> x = 2

                   y = -3 

                   z = -4