Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
\(1.6x\left(x-10\right)-2x+20=0\)
⇔\(6x\left(x-10\right)-2\left(x-10\right)=0\)
⇔ \(2\left(x-10\right)\left(3x-1\right)=0\)
⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)
KL....
\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)
⇔ \(3\left(x-3\right)\left(x^2-1\right)=0\)
⇔ \(x=+-1\) hoặc \(x=3\)
KL....
\(3.x^2-8x+16=2\left(x-4\right)\)
⇔ \(\left(x-4\right)^2-2\left(x-4\right)=0\)
⇔ \(\left(x-4\right)\left(x-6\right)=0\)
⇔ \(x=4\) hoặc \(x=6\)
KL.....
\(4.x^2-16+7x\left(x+4\right)=0\)
\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)
⇔ \(x=-4hoacx=\dfrac{1}{2}\)
KL.....
\(5.x^2-13x-14=0\)
⇔ \(x^2+x-14x-14=0\)
\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)
\(\text{⇔}x=14hoacx=-1\)
KL......
Còn lại tương tự ( dài quá ~ )
Bài 1:
1,\(\left(x+2\right)\left(x^2-3x+5\right)=\left(x+2\right).x^2\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5\right)-\left(x+2\right).x^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(-3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{5}{3};-2\right\}\)
2,\(2x^2-x=3-6x\)
\(\Leftrightarrow2x^2-x-3+6x=0\)
\(\Leftrightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\)
\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{1}{2};-3\right\}\)
3,\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;-2\right\}\)
4.\(x^3+2x^2-x-2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;-2\right\}\)
Nản quá không làm nữa đâu.Sorry
1: \(\Leftrightarrow\left(x+2\right)\left(x^2-3x+5-x^2\right)=0\)
=>(x+2)(-3x+5)=0
=>x=-2 hoặc x=5/3
2: \(\Leftrightarrow2x^2+5x-3=0\)
\(\Leftrightarrow2x^2+6x-x-3=0\)
=>(x+3)(2x-1)=0
=>x=1/2 hoặc x=-3
3: \(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
=>(x+2)(x+1)(x-1)=0
hay \(x\in\left\{-2;-1;1\right\}\)
5: \(3x^2+7x-20=0\)
\(\Leftrightarrow3x^2+12x-5x-20=0\)
=>(x+4)(3x-5)=0
=>x=5/3 hoặc x=-4
Câu 1:
\((x+2)(x^2-3x+5)=(x+2)x^2\)
\(\Leftrightarrow (x+2)(x^2-3x+5)-(x+2)x^2=0\)
\(\Leftrightarrow (x+2)(x^2-3x+5-x^2)=0\)
\(\Leftrightarrow (x+2)(-3x+5)=0\Rightarrow \left[\begin{matrix} x+2=0\\ -3x+5=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=\frac{5}{3}\end{matrix}\right.\)
Câu 2:
\(2x^2-x=3-6x\)
\(\Leftrightarrow x(2x-1)=3(1-2x)=-3(2x-1)\)
\(\Leftrightarrow x(2x-1)+3(2x-1)=0\)
\(\Leftrightarrow (2x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=-3\end{matrix}\right.\)
Câu 3:
\(x^3+2x^2+x+2=0\)
\(\Leftrightarrow (x^3+2x^2)+(x+2)=0\Leftrightarrow x^2(x+2)+(x+2)=0\)
\(\Leftrightarrow (x+2)(x^2+1)=0\Rightarrow \left[\begin{matrix} x+2=0\\ x^2+1=0(\text{vô lý})\end{matrix}\right.\Rightarrow x=-2\)
Câu 5:
\(3x^2+7x-20=0\)
\(\Leftrightarrow 3x^2+12x-5x-20=0\)
\(\Leftrightarrow 3x(x+4)-5(x+4)=0\)
\(\Leftrightarrow (3x-5)(x+4)=0 \Rightarrow \left[\begin{matrix} x=\frac{5}{3}\\ x=-4\end{matrix}\right.\)
\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
\(\Rightarrow\)Phải có 1 hoặc 3 số âm (còn lại dương)
Mà \(x^2-20< x^2-15< x^2-10< x^2-5\)
TH1: 3 số âm, 1 số dương
\(\Rightarrow\hept{\begin{cases}x^2-10< 0\\x^2-5>0\end{cases}}\Leftrightarrow5< x^2< 10\Leftrightarrow x=\pm3\)
TH2: 1 số âm, 3 số dương
\(\Rightarrow\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}}\Leftrightarrow15< x^2< 20\left(L\right)\)
Vậy x = 3 hoặc x = -3
(x2-5)(x2-10)(x2-15)(x2-20) <0
<=> (x2-5)(1.2.3.4) < 0
<=> (x2-5) . 36 < 0
<=> 36x2 -180 < 0
<=> 36x2 < 180
<=> x2 < 5
<=> x < √5
Đó là cách mình làm