Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 12 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 64x3 - 64x2 + 3x = -1 + 5 + 1 - 27
<=> -112x2 + 15x = -22
<=> -112x2 + 15x + 22 = 0 (*) ( lại phải xài Delta :(( )
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-15+\sqrt{10081}}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Nghiệm xấu quá -..-
Bài làm:
Ta có: \(\left(4x-1\right)^3+\left(3-4x\right)\left(9+12x+16x^2\right)=\left(8x-1\right)\left(8x+1\right)-\left(3x-5\right)\)
\(\Leftrightarrow64x^3-48x^2+12x-1+27-64x^3-64x^2+1+3x-5=0\)
\(\Leftrightarrow15x+22=0\)
\(\Leftrightarrow15x=-22\)
\(\Rightarrow x=-\frac{22}{15}\)
( 4x - 1 )3 + ( 3 - 4x )( 9 + 12x + 16x2 ) = ( 8x - 1 )( 8x + 1 ) - ( 3x - 5 )
<=> 64x3 - 48x2 + 12x - 1 + [ 33 - ( 4x )3 ] = ( 8x )2 - 1 - 3x + 5
<=> 64x3 - 48x2 + 12x - 1 + 27 - 64x3 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 = 64x2 - 3x + 4
<=> -48x2 + 12x + 26 - 64x2 + 3x - 4 = 0
<=> -112x2 + 15x + 22 = 0 (*)
\(\Delta=b^2-4ac=15^2-4\cdot\left(-112\right)\cdot22=225+9856=10081\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{10081}-15}{-224}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-15-\sqrt{10081}}{-224}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế -..-
1. x2-8x+1 = x2 -2x.4 + 42 - 42 +1 = ( x- 4 )2 - 15
mà ( x - 4 )2 > 0
=> ( x - 4 )2 -15 > 0
Vậy -15 là gt min của biểu thức khi x = 4
2. x2 - 4x + y2 - 6y + 2 = x2 - 2.2x + 22 + y2 - 2.3y + 32 -11 = (x-2)2 + ( y - 3)2 -11
mà ( x - 2)2 > 0
( y - 3)2 > 0
Vậy -11 là gt min của biểu thức khi x=2 và y = 3
Mình nghĩ là bài 3 là tìm gt lớn nhất chứ bạn ^^
\(x^3+4x^2+8x=-5\)
\(\Leftrightarrow x^3+4x^2+8x+5=0\)
\(\Leftrightarrow x^3+x^2+3x^2+3x+5x+5=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(3x^2+3x\right)+\left(5x+5\right)=0\)
\(\Leftrightarrow x^2.\left(x+1\right)+3x\left(x+1\right)+5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+3x+5\right)=0\)(1)
Ta có: \(x^2+3x+5=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)
\(\Rightarrow x^2+3x+5\ge\frac{11}{4}\)(2)
Từ (1) và (2) \(\Rightarrow x+1=0\)\(\Leftrightarrow x=-1\)
Vậy \(x=-1\)