K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

(x-7)x+1(1 - (x-7)10) = 0

(x-7)x+1  = 0 

x = 7

1 - (x-7)10 = 0

x = 6; 8

kl: pt có 3 nghiem x = 6;7;8

31 tháng 8 2020

x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

x2 + 4x + 7 = ( x2 + 4x + 4 ) + 3 = ( x + 2 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

-x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

-4x2 - 4x - 2 = -4( x2 + x + 1/4 ) - 1 = -4( x + 1/2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

9 tháng 8 2016

Ta có \(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

Tới đây bạn xét hai trường hợp nhé :)

9 tháng 8 2016

(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)

=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)

=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)

13 tháng 8 2019

1) tìm x : 

5x. (x - 3 ) + 7.(x - 3 ) = 0

<=> ( x -3 ) . ( 5x +7 ) = 0

<=> x - 3 = 0 hoặc 5x + 7 = 0 

<=> x = 3 hoặc x = -7/5

Vậy x € { 3 ; -7/5 }

3 ) chứng mình rằng : 

1996 + 71995 + 71994 chia hết cho 57 

71996 + 71995 + 71994 

<=> 71994  . 72 + 71994 .7 + 71994

<=> 71994 . ( 7 + 7 + 1 ) 

<=> 71994 .  57 chia  hết cho 57 ( vì 57 chia hết cho 57 )  ( đ..p.c.m ) 

13 tháng 8 2019

Bài 1 : \(5x\left(x-3\right)+7\left(x-3\right)=0.\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x^2-8x-21=0\)

\(\Rightarrow5x^2-15x+7x-21=0\)

\(\Rightarrow5x\left(x-3\right)+7\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(5x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{5}\end{cases}}}\)

Bài 2 : \(a,A=0\Rightarrow x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x\in\left\{0;3\right\}\)

\(b,A>0\Rightarrow x^2-3x>0\Rightarrow x\left(x-3\right)>0\)

TH1 : \(\hept{\begin{cases}x>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}\Rightarrow}x>3}\)

TH2 : \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 3\end{cases}\Rightarrow}x< 3}\)

C, tương tự 

Bài 3 : \(7^{1996}+7^{1995}+7^{1994}=7^{1994}\left(7^2+7+1\right)\)

\(=7^{1994}.57\)\(⋮\)\(7\)

\(\Rightarrow7^{1996}+7^{1995}+7^{1994}⋮\)\(7\)

13 tháng 11 2019

<=> 2x^2-x-(x^2-4x+4)=7

<=> x^2+3x-11=0

<=> 4x^2+12x=44

<=> (2x+3)^2=53

<=> 2x+3 = căn 53 hoặc - căn 53

<=> x=(căn 53-3)/2 hoặc x=(-căn 53-3)/2.

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

14 tháng 6 2017

tôi no bít

gọi Q(x) là thương của phép chia x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1

vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b

ta có x99+x55+x11+x+7=(x2−1)Q(x)+ax+bx99+x55+x11+x+7=(x2−1)Q(x)+ax+b

=(x−1)(x+1)Q(x)+ax+b(x−1)(x+1)Q(x)+ax+b (*)

thay x=1 ở (*) cho ta được 11=a+b

thay x=-1 ở (*) cho ta được 3=-a+b

ta có a+b+(-a+b)=11+3=14

⇔2b=14⇔b=7⇒a=11−7=4⇔2b=14⇔b=7⇒a=11−7=4

Vậy dư của phép chia đa thức P(x)= x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1 là 4x+7

14 tháng 4 2020

5/ (x2 – 4) + (x – 2)(4 – 2x) = 0

⇔(x-2)(x+2)+(x – 2)(4 – 2x)=0

⇔(x-2)(x+2+4-2x)=0

⇔(x-2)(6-x)=0

\(\left[{}\begin{matrix}x-2=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

6/ x(2x – 7) – 4x + 14 = 0

⇔2x2-11x+14=0

⇔(x-\(\frac{7}{2}\))(x-2)=0

\(\left[{}\begin{matrix}x-\frac{7}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)

7/ x2 – x – (3x–3)= 0

⇔x2-4x+3=0

⇔(x-3)(x-1)=0

\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

8/ (x2 – 2x + 1) – 4 = 0

⇔(x-1)2-4=0

⇔(x-1-4)(x-1+4)=0

⇔(x-5)(x+3)=0

\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

9/ 4x2 + 4x + 1 = x2

⇔3x2+4x+1=0

⇔(3x+1)(x+1)=0

\(\left[{}\begin{matrix}3x+1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-1\end{matrix}\right.\)

10/ x2 – x = - 2x + 2

⇔3x2-x-2=0 (chuyển vế)

⇔(3x+2)(x-1)=0

\(\left[{}\begin{matrix}3x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=1\end{matrix}\right.\)

11/ x2 – 5x + 6 = 0

⇔x2-3x-2x+6=0

⇔x(x-3)-2(x-3)=0

⇔(x-3)(x-2)=0

\(\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Mình làm bài khá tắt nên có gì không hiểu bạn cứ hỏi mình nha!

14 tháng 4 2020

Cám ơn bn nhayeu