Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :
\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )
Ta có :
\(-x^2+2x+4\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(x-1\right)^2-5\)
Tới đây chắc bạn hỉu rồi nhỉ ?
a) \(ĐKXĐ:x\ne\pm2\)
\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)
\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)
\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)
\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)
\(\Leftrightarrow P=\frac{x+2}{x-2}\)
b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)
\(\Leftrightarrow4⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)
Loại \(x=-2\)
\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)
Vì P là số nguyên tố nên
\(P\in\left\{5;3;2\right\}\)
Vậy để P là số nguyên tố thì \(x\in\left\{3;4;6\right\}\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
a) \(\frac{x-1}{2x}+\frac{2x+1}{2x}+\frac{1-5x}{6x}\)
\(=\frac{3x-3}{6x}+\frac{6x+3}{6x}+\frac{1-5x}{6x}\)
\(=\frac{3x-3+6x+3+1-5x}{6x}\)
\(=\frac{4x+1}{6x}\)
\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)(đk: x \(\ne\)-1; x \(\ne\)3)
\(\Leftrightarrow\)\(\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\) x(x + 1) - x(x - 3) = 4x
\(\Leftrightarrow\) x2 + x - x2 + 3x = 4x
\(\Leftrightarrow\) 3x - 4x = 0
\(\Leftrightarrow\) -x = 0
\(\Leftrightarrow\) x = 0 (tmđk)
Vậy phương trên có n0 là x = 0
WTF đăng một loạt vầy ai dám làm @@
Mấy bài này trong sách bài tập cx có bài mẫu
tự lật sách ra học ik , đăng 1 loạt ai giải cho chép zô hết
a: TH1: x<-1/2
PT sẽ là -2x-1+3-x=4
=>-3x+2=4
=>-3x=2
=>x=-2/3(nhận)
TH2: -1/2<=x<3
Pt sẽ là 2x+1+3-x=4
=>x+4=4
=>x=0(nhận)
TH3: x>=3
=>x-3+2x+1=4
=>3x-2=4
=>x=2(loại)
b: TH1: x<-3/2
Pt sẽ là -2x-3+3-4x=x
=>-6x=x
=>x=0(loại)
TH2: -3/2<=x<3/4
PT sẽ là 2x+3+3-4x=x
=>-2x+6-x=0
=>-3x=-6
=>x=2(loại)
TH3: x>=3/4
PT sẽ là 2x+3+4x-3=x
=>6x=x
=>x=0(loại)