K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2016

a) \(x^4-10x^3+25x^2=0\)

\(\Leftrightarrow x^2\left(x^2-10x+25\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2=0\\\left(x-5\right)^2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b) \(x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

5 tháng 8 2016

a,  x4-10x3+25x2=0

<=> x2(x2-10x+25)=0

<=>x2(x-5)2=0

<=>x2=0 hoặc (x-5)2=0

<=>x=0 hoặc x=5

Vậy...

b, x3+3x2+3x+1=0

<=> (x+1)3=0

<=>x+1=0

<=>x=-1 Vậy...

5 tháng 8 2016

a) x4 - 10x3 + 25x2 = (x2)2 - 2.x2.5x + (5x)2 = (x2 - 5x)2 = 0 => x(x - 5) = 0 => x = 0 hay x - 5 = 0 => x = 0 ; 5

b) x3 + 3x2 + 3x + 1 = x3 + 3.x2.1 + 3.x.12 + 13 = (x + 1)3 = 0 => x + 1 = 0 => x = -1

5 tháng 8 2016

a,x^2(x^2-10x+25)=0

x^2(x-5)^2=0

=> x^2=0 hoac (x-5)^2=0

=>x=0 hoac 5

22 tháng 9 2020

a) \(\left(x^2-1\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=25\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm5\end{cases}}\)

b) \(x^2-8x+16=0\)

\(\Leftrightarrow\left(x-4\right)^2=0\)

\(\Leftrightarrow x-4=0\)

\(\Leftrightarrow x=4\)

c) \(x^3+3x^2+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3=0\)

\(\Leftrightarrow x+1=0\)

\(\Rightarrow x=-1\)

d) \(x^3+10x^2+25x=0\)

\(\Leftrightarrow x\left(x+5\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

22 tháng 9 2020

a) ( x2 - 1 )( x2 - 25 ) = 0

<=> \(\orbr{\begin{cases}x^2-1=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm5\end{cases}}\)

b) x2 - 8x + 16 = 0

<=> ( x - 4 )2 = 0

<=> x - 4 = 0 

<=> x = 4

c) x3 + 3x2 + 3x + 1 = 0

<=> ( x + 1 )3 = 0

<=> x + 1 = 0

<=> x = -1

d) x3 + 10x2 + 25x = 0

<=> x( x2 + 10x + 25 ) = 0

<=> x( x + 5 )2 = 0

<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

a: \(6x^4+25x^3+12x^2-25x+6=0\)

\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)

hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)

b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)

\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)

=>x+1=0

hay x=-1

c: \(x^2\left(x^2+2\right)-x^2-2=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)

=>x=1 hoặc x=-1

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

10 tháng 8 2021

a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)

\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)

Đẳng thức xảy ra khi x = 1/5 ; y = -3/2 

b, \(3x^2+2y^2-12x+12y+30=0\)

\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)

Đẳng thức xảy ra khi x = 2 ; y = -3 

\(a)\)

\(25x^2+4y^2-10x+12x+10=0\)

\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)

\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)

\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)

\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)

\(b)\)

\(3x^2+2y^2-12x+12y+30=0\)

\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)

Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)

15 tháng 2 2017

a) Gần giống cho nó giống luôn.

cần thêm (-x^3+2x^2-x) là giống

\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)

\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)

\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)

Nghiệm duy nhất: x=1

25 tháng 1 2019

câu d

15 tháng 3 2019

sáng mai chị làm cho