K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

a) \(\left(x^2+4\right)^2-4x\left(x^2+4\right)=0\)

\(=\left(x^2+4\right)\left(x^2+4-4x\right)=0\)

\(=\left(x^2+4\right)\left(x+2\right)^2=0\)

Mà \(x^2\ge0\Rightarrow x^2+4>0\)

\(\Rightarrow x+2=0\)

\(\Rightarrow x=-2\)

b) \(x^5-18x^3+81x=0\)

\(=\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)

\(=x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)

\(=\left(x^3-9x\right)\left(x^2-9\right)=0\)

\(=x\left(x^2-9\right)\left(x^2-9\right)=0\)

\(=x\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x\in\left\{-3;3\right\}\end{cases}}\)

19 tháng 7 2015

a) (x2 + 4)2 - 4x(x2 + 4) = 0

(x2 + 4)(x2 + 4 - 4x) = 0

(x2 + 4)(x - 2)2 = 0

\(\Rightarrow\) x2 + 4 = 0 hoặc (x - 2)2 = 0

\(\Rightarrow\) x2 = - 4 hoặc x - 2 = 0

\(\Rightarrow\) x \(\in\) tập hợp rỗng hoặc x = 2

Vậy x = 2

b) x5 - 18x3 + 81x = 0

x(x4 - 18x2 + 81) = 0

x(x2 - 9) = 0

x(x - 3)(x + 3) = 0

\(\Rightarrow\) x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0

\(\Rightarrow\) x = 0 hoặc x = 3 hoặc x = - 3

Vậy \(x\in\left\{0;3;-3\right\}\)

23 tháng 7 2017

a, \(x^4-5x^3+2x^2+10x+2=0\)

\(\Rightarrow x^4+x^3-6x^3-6x^2+8x^2+8x+2x+2=0\)

\(\Rightarrow x^3\left(x+1\right)-6x^2\left(x+1\right)+8x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^3-6x^2+8x+2\right)=0\)

\(x^3-6x^2+8x+2>0\) nên \(x+1=0\Rightarrow x=-1\)

Các câu còn lại tương tự!

Chúc bạn học tốt!!!

23 tháng 7 2017

tại sao lại > 0 nhỉ?

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

14 tháng 1 2018

\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)

\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)

\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)

\(d,x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm duy nhất x = -1

\(e,x^3-7x+6=0\)

\(\Leftrightarrow x^3-4x-3x+6=0\)

\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)

\(f,x^4-4x^3+12x-9=0\)

\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)

\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)

Vậy phương trình vô nghiệm

\(g,x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0

Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)

\(h,x^4-4x^3+3x^2+4x-4=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)

7 tháng 10 2017

bài 1

a)\(x^2+5x+6=\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}}\)

12 tháng 7 2019

\(x^5+x^4+x^3+x^2+x+1=0\Leftrightarrow x^4\left(x+1\right)+x^2\left(x+1\right)+x+1=\left(x^4+x^2+1\right)\left(x+1\right)=0maf:x^4+x^2+1>\left(x^2+\frac{1}{2}\right)\ge0\Rightarrow x+1=0\Leftrightarrow x=-1\)

4 tháng 12 2018

Câu e) là: 2x3 + 6x2 = x2 + 3x nhé

4 tháng 12 2018

a) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

b) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\)

\(\Rightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\3x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

d) \(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

e) \(2x^3+6x^2=x^2+3x\)

\(\Rightarrow2x^3+6x^2-x^2-3x=0\)

\(\Rightarrow2x^3+5x^2-3x=0\)

\(\Rightarrow x\left(2x^2+5x-3\right)=0\)

\(\Rightarrow2x^2+5x-3=0\)

\(\Rightarrow2x^2-6x+x-3=0\)

\(\Rightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

f) \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)-2x^2\)

\(\Rightarrow\left(x^2-1\right)\left(x+2\right)-\left(x^3-8\right)-2x^2=0\)

\(\Rightarrow x^3+2x^2-x+2-x^3+8-2x^2=0\)

\(\Rightarrow-x+10=0\)

\(\Rightarrow x=10\)

19 tháng 9 2016

\(x^5-18x^3+81x=0\)

\(\Leftrightarrow\left(x^5-9x^3\right)-\left(9x^3-81x\right)=0\)

\(\Leftrightarrow x^3\left(x^2-9\right)-9x\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^3-9x\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow x.\left(x^2-9\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow x.\left(x^2-9\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-9=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2=9\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=\pm3\end{array}\right.\)

Vây ..................