Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) \(4x\left(5x+2\right)-\left(10x-3\right)\left(2x+7\right)=133\)
\(\Leftrightarrow20x^2+8x-\left(20x^2-6x+70x-21\right)=133\)
\(\Leftrightarrow20x^2+8x-20x^2+6x-70x+21=133\)
\(\Leftrightarrow-56x+21=133\)
\(\Leftrightarrow-56x=112\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)
b ) \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)
\(\Leftrightarrow\left(18x-15\right)\left(4x+1\right)-\left(72x^2+27x-16x-6\right)=203\)
\(\Leftrightarrow72x^2-60x+18x-15-72x^2-27x+16x+6=203\)
\(\Leftrightarrow\left(72x^2-72x^2\right)+\left(18x+16x-60x-27x\right)-\left(15-6\right)=203\)
\(\Leftrightarrow-53x-9=203\)
\(\Leftrightarrow-53x=212\)
\(\Leftrightarrow x=-4\)
Vậy \(x=-4\)
a)\(A=x^5-36x^4+37x^3-69x^2+34x+15\)
=\(x^5-35x^4-x^4+35x^3+2x^2-70x^2+x^2-35x+x+15\)
=\(\left(x^4-x^3+x^2+x\right)\left(x-35\right)+x+15\)
=0+35+15=50(do x=35)
b, \(3\left(6x-5\right)\left(4x+1\right)-\left(8x+3\right)\left(9x-2\right)=203\)
\(\Rightarrow3\left(24x^2+6x-20x-5\right)-\left(72x^2-16x+27x-6\right)=203\)
\(\Rightarrow72x^2-42x-15-72x^2-11x+6=203\)
\(\Rightarrow-53x=203-6+15=212\)
\(\Rightarrow x=-4\)
Chúc bạn học tốt!!!
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)
b. \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)
c. \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)
1. a) \(8x^3-32x=8x\left(x^2-4\right)=8x\left(x-4\right)\left(x+4\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)=\left(y+4\right)\left(y^2-4y+16+y-16\right)\)
\(=\left(y-4\right)\left(y^2-3y\right)=\left(y-4\right)y\left(y-3\right)\)
2) a)
\(4x^3-9x=0\)
\(\Leftrightarrow x\left(4x^2-9\right)=0\)
\(\Leftrightarrow x\left(2x+3\right)\left(2x-3\right)=0\)
<=> x=0 hoặc 2x+3=0 hoặc 2x-3=0
<=> x=0 hoặc x=-3/2 hoặc x=3/2
b) \(A=x^3-9x^2+27x-27=x^3-3.x^2.3+3.x.3^2-3^3=\left(x-3\right)^3\)
Tại x=203
A=(203-3)3=2003
Bài 1 :
a) \(8x^3-32x\)
\(=8x\left(x^2-4\right)\)
\(=8x\left(x-2\right)\left(x+2\right)\)
b) \(y^3+64+\left(y+4\right)\left(y-16\right)\)
\(=\left(y^3+4^3\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4y+16\right)+\left(y+4\right)\left(y-16\right)\)
\(=\left(y+4\right)\left(y^2-4x+16+y-16\right)\)
\(=\left(y+4\right)\left(y^2+y-4x\right)\)
Bài 2 :
a) \(4x^3-9x=0\)
\(x\left(4x^2-9\right)=0\)
\(x\left[\left(2x\right)^2-3^2\right]=0\)
\(x\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\2x-3=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\\x=\frac{-3}{2}\end{cases}}}\)
P.s: ở trên dùng ngoặc vuông nhé
b) \(A=x^3-9x^2+27x-27\)
\(A=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)
\(A=\left(x-3\right)^3\)
Thay x = 203 vào biểu thức ta có :
\(A=\left(203-3\right)^3\)
\(A=200^3\)
\(A=8000000\)
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
a, 3(6x−5)(4x+1)−(8x+3)(9x−2)=2033(6x−5)(4x+1)−(8x+3)(9x−2)=203
⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203
⇒72x2−42x−15−72x2−11x+6=203⇒72x2−42x−15−72x2−11x+6=203
⇒−53x=203−6+15=212⇒−53x=203−6+15=212
nhầm òi
3(6x−5)(4x+1)−(8x+3)(9x−2)=2033(6x−5)(4x+1)−(8x+3)(9x−2)=203
⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203⇒3(24x2+6x−20x−5)−(72x2−16x+27x−6)=203
⇒72x2−42x−15−72x2−11x+6=203⇒72x2−42x−15−72x2−11x+6=203
⇒−53x=203−6+15=212⇒−53x=203−6+15=212
⇒x=−4