Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (x2+1)3 - [(x2)3 + 13]=0
(x6+ 3.x4 +3.x2 +1) - (x6+1) =0
x6+3.x4+3.x2+1-x6-1=0
3.x4+3.x2=0
3.x2(x2+1)=0
\(\orbr{\begin{cases}3.x^2=0\\x^2+1=0\end{cases}}\orbr{ }\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(loai\right)\end{cases}}\)
vay x=0
Đầu tiên là tính chất cơ bản của trị tuyệt đối: \(\left|A\right|\ge0\) với A là một biểu thức bất kì
Cho nên, để pt \(\left|A\right|=a\) có nghiệm thì điều kiện ban đầu là \(a\ge0\)
Ví dụ như sau:
\(\left|x+1\right|=1\)
Ta thấy \(1>0\) nên pt này có nghiệm
Còn pt: \(\left|x+1\right|=-1\)
Thì \(-1< 0\) nên pt này vô nghiệm
Do đó, ở 1 pt nếu 1 vế là trị tuyệt đối, 1 vế là biểu thức theo x thì đầu tiên ta phải tìm điều kiện cho biểu thức vế phải không âm
Ví dụ:
\(\left|3x+2\right|=2x-1\)
Thì đầu tiên phải tìm điều kiện để vế phải ko âm, nghĩa là:
\(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\)
Xong bước tìm điều kiện, giờ đến giải pt
//
Phương trình trị tuyệt đối có dạng: \(\left|A\right|=a\) (với \(a\ge0\)) thì ta suy ra:
\(\left[{}\begin{matrix}A=a\\A=-a\end{matrix}\right.\)
Ví dụ như sau:
\(\left|2x+3\right|=1\Rightarrow\left[{}\begin{matrix}2x+3=1\\2x+3=-1\end{matrix}\right.\) sau đó giải pt bình thường
Nếu vế phải là biểu thức của x thì cũng làm y hệt thôi, ví dụ như sau:
\(\left|3x+2\right|=2x-1\)
Sau khi đã xong bước tìm điều kiện bên trên, pt trở thành:
\(\Rightarrow\left[{}\begin{matrix}3x+2=2x-1\\3x+2=-\left(2x-1\right)\end{matrix}\right.\)
Và giải bình thường.
Sau khi giải xong, nhớ đối chiếu nghiệm tìm được với điều kiện ban đầu, nếu thỏa mãn thì nhận, còn ko thì phải loại.
Ví dụ 1 bài toán đầy đủ:
\(\left|5x-3\right|-2x+5=0\)
\(\Leftrightarrow\left|5x-3\right|=2x-5\) (đầu tiên, biến đổi về dạng \(\left|A\right|=a\))
Do \(\left|5x-3\right|\ge0\Rightarrow2x-5\ge0\Rightarrow x\ge\frac{5}{2}\) (tìm điều kiện cho vế phải)
Khi đó:
\(\left|5x-3\right|=2x-5\)
\(\Rightarrow\left[{}\begin{matrix}5x-3=2x-5\\5x-3=-\left(2x-5\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=-2\\7x=8\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{2}{3}< \frac{5}{2}\\x=\frac{8}{7}< \frac{5}{2}\end{matrix}\right.\)
2 nghiệm vừa tìm được đều nhỏ hơn \(\frac{5}{2}\) (không thỏa mãn) nên pt vô nghiệm
\(\left(\frac{1}{2}-\frac{1}{3}\right).6x+6x+2=67+64\)
\(\frac{\Rightarrow1}{6}.6x+6x+2=131\)
\(\Rightarrow x+6x=131-2\)
\(\Rightarrow7x=129\)
\(\Rightarrow x=\frac{129}{7}\)
Ta có : x3 + 6x2 + 6x + 1 = 0
=> x3 + 6x2.1 + 6x.12 + 13 = 0
=> (x + 1)3 = 0
=> x + 1 = 0
=> x = -1
X^3+6x^2+6x+1=0
=>x^3+6x^2x1+6xx1^2+1^3=0
=>(x+1)^3=0
=> x+1=0
=>-1
a) Cho D(x) =0
=> (x -1)^2 +( x+5)^2 =0
=> (x-1) ^2 = -( x+5)^2
=> x-1 = -x-5
=> x+x = -5+1
2x = -4
=> x = -2
KL : x=-2 là nghiệm của D(x)
b) Cho N(x) =0
=> x^2 -6x +8 =0
=> x.(x-6) =-8
=> x = 2
KL: x=2 là nghiệm của N(x)
c) Cho H(x) =0
=> 8x^2 -6x -2 =0
2.( 4x^2 -3x -1) =0
=> 4x^2 -3x -1 =0
x.(4x-3) =1
=> x=1
KL: x=1 là nghiệm của H(x)
d) Cho F(x) =0
=> 2x^3 +x^2 -8x -4 =0
x( 2x^2 +x -8) = 4
=> x= 2
KL: x=2 là nghiệm của F(x)
Chúc bn học tốt !!!
a) x = 1 hoặc x = -5
b) x = 2 hoặc x = 4
c) x = 1 hoặc x = -1/4
d) x = -2 hoặc x = -1/2 hoặc x = 2
TH1: \(x< -2;\)ta có:
\(-\left(x+2\right)-6x=1\)
\(-x-2-6x=1\)
\(-7x=1+2=3\)
\(x=\frac{-3}{7}\)( không thỏa mãn \(x< -2;\))
TH2:\(x\ge-2;\)ta có:
\(\left(x+2\right)-6x=1\)
\(-5x+2=1\)
\(-5x=1-2=-1\)
\(x=\frac{1}{5}\)(thỏa mãn)
Vậy \(x=\frac{1}{5}\)
1) Cho f(x) =0
=> x^2 + 6x +5 =0
x^2 +x +5x +5 = 0
x. ( x+1) + 5.(x+1) =0
(x+1) .(x+5) =0
=> x+1 =0 => x +5 =0
x =-1 x = -5
KL: x =-1 hoặc x =-5
bn lm như trên mk nha!!!!!