Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a ) = (x+y)3 -(x+y)
= (x+y)[(x+y)2+1]
c) = 5(x2-xy+y2)-20z2
=5(x-y)2-20z2
= 5 [ (x-y)2- 4z2 ]
=5(x-y-4z)(x-y+4z)
Bài 1:
a) x3-x+3x2y+3xy2+y3-y
=x3+2x2y-x2+xy2-xy+x2y+2xy2-xy+y3-y2+x2+2xy-x+y2-y
=x(x2+2xy-x+y2-y)+y(x2+2xy-x+y2-y)+(x2+2xy-x+y2-y)
=(x2+2xy-x+y2-y)(x+y+1)
=[x(x+y-1)+y(x+y-1)](x+y+1)
=(x+y-1)(x+y)(x+y+1)
c) 5x2-10xy+5y2-20z2
=-5(2xy-y2+4z2-2)
Bài 2:
5x(x-1)=x-1
=>5x2-6x+1=0
=>5x2-x-5x+1
=>x(5x-1)-(5x-1)
=>(x-1)(5x-1)=0
=>x=1 hoặc x=1/5
b) 2(x+5)-x2-5x=0
=>2(x+5)-x(x+5)=0
=>(2-x)(x+5)=0
=>x=2 hoặc x=-5
a) \(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
b) \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-3\right)\)
c) \(x^2-2x-4y^2+1\)
\(=\left(x-1\right)^2-4y^2\)
\(=\left(x-2y-1\right)\left(x+2y-1\right)\)
a) \(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+x+2\right)\left(x-2\right)\)
b) \(x^3+x^2-10x+8\)
\(=x^3+4x^2-3x^2-12x+2x+8\)
\(=x^2\left(x+4\right)-3x\left(x+4\right)+2\left(x+4\right)\)
\(=\left(x^2-2x-x+2\right)\left(x+4\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+4\right)\)
c) \(x^3-13x-12\)
\(=x^3+x^2-x^2-x-12x-12\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-12\left(x+1\right)\)
\(=\left(x^2-4x+3x-12\right)\left(x+1\right)\)
\(=\left(x-4\right)\left(x+3\right)\left(x+1\right)\)
f) \(x^3+5x^2+8x+4\)
\(=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+2\right)\)
\(=\left(x^2+4x+4\right)\left(x+1\right)\)
\(=\left(x+2\right)^2\left(x+1\right)\)
\(x^3-x^2-4\)
\(=x^3-2x^2+x^2-2x+2x-4\)
\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x+2\right)\)
b, \(x^3+x^2-10x+8\)
\(=x^3-x^2+2x^2-2x-8x+8\)
\(=x^2\left(x-1\right)+2x\left(x-1\right)-8\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+2x-8\right)\)
\(=\left(x-1\right).\left[x^2+4x-2x-8\right]\)
\(=\left(x-1\right).\left[x\left(x+4\right)-2\left(x+4\right)\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x-2\right)\)
c, \(x^3-13x-12\)
\(=x^3+x^2-x^2-x-12x-12\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-12\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-12\right)\)
\(=\left(x+1\right)\left(x+3\right)\left(x-4\right)\)
d, \(x^3+5x^2+8x+4\)
\(=x^3+x^2+4x^2+4x+4x+4\)
\(=x^2\left(x+1\right)+4x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
Chúc bạn học tốt.
\(x^2+4x+3\)
\(=\left(x+1\right)\left(x+3\right)\)
\(2x^2+3x-5\)
\(\left(x-1\right)\left(x+\frac{5}{2}\right)\)
\(3x^2y-6xy^2+3xy\)
\(=3xy\left(x-2y+1\right)\)
\(x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(x\left(x-1\right)-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Bài 1 :
\(3x^2y-6xy^2+3xy\)
\(=3xy\left(x-2y+1\right)\)
a) 5x ( x - 2000 ) - x + 2000 = 0
5x ( x - 2000 ) - ( x - 2000 ) = 0
5x ( x - 2000 ) = 0
\(\Rightarrow\orbr{\begin{cases}5x=0\\x-2000=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2000\end{cases}}\)
Vậy ....
b) x3 - 13x = 0
x ( x2 - 13 ) = 0
x ( x - \(\sqrt{13}\)) - ( x + \(\sqrt{13}\)) = 0
\(\Rightarrow\hept{\begin{cases}x=0\\x-\sqrt{13}\\x+\sqrt{13}\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=\sqrt{13}\\x=\sqrt{-13}\end{cases}}\)
Vậy ....
a) x2 + 6 + 9
= x2 + 2 . 3 . x + 32
= ( x + 3 )2
b) 10x - 25 - x2
= - ( x2 - 10x + 25 )
= - ( x - 5 )2
c) 8x3 - 1/8
= ( 2x )3 - ( 1/2 )3
= ( 2x - 1/2 ) ( 4x2 + x + 1/4 )
d) 1/25 x2 - 64x2
= ( 1/5x )2 - ( 8x )2
= ( 1/5x + 8x ) ( 1/5 - 8x )
\(x^3-13x=0\)
<=> \(x\left(x^2-13\right)=0\)
<=> \(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
<=> \(x=0\)
hoặc \(x-\sqrt{13}=0\)
hoặc \(x+\sqrt{13}=0\)
<=> .....
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
Mình làm ý b,c thôi a tương tự b
b) 5x^2 - 13x = 0
=> x(5x - 1 3) = 0
=> x = 0 hoặc 5x - 13 = 0
=> x = 0 hoặc x = 13/5
b) x + 1 = ( x+1 )^2
=> (x + 1 )^2 - (x+ 1) = 0
=> (x +1 )( x + 1 - 1 ) = 0
=> x(x + 1 ) = 0
=> x= 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
a, x+5x2=0
<=>x(1+5x)=0
<=>x=0 hoặc 1+5x=0
<=>x=0 hoặc x=-1/5
b, 5x2-13x=0
<=>x(5x-13)=0
<=>x=0 hoặc 5x-13=0
<=>x=0 hoặc x=13/5
c, x+1=(x+1)2
<=>(x+1)2-(x+1)=0
<=>(x+1)(x+1-1)=0
<=>x(x+1)=0
<=>x=0 hoặc x+1=0
<=>x=0 hoặc x=-1