Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2=\left(x-1\right)\)
\(x1=1\)
\(x2=2\)
<=>x4-x+x2 +x+1= x (x-1) (x2+x+1) + (x2+x+1) = (x2+x+1)(x2-x+1)
chắc có lẽ đúng đó
x8 + x +1= x8 +x7 - x7 + x6 - x6 + x5 - x5 + x4 -x4 +x3 -x3 + x2 -x2 +x +1
= (x2+x+1)*(x6 -x5+x3-x2+1)
Đa thức có dạng \(x^{3a+1}+x^{3b+2}+1\) thì đưa về dạng \(\left(x^2+x+1\right)\cdot P\left(x\right)\) bạn nhé!
Bài làm:
\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1^3\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2\left(x-1\right)+1\right)\)
Ta có:
\(x^5+x-1=\left(x^5+x^2\right)-\left(x^2-x+1\right)=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)
Ủng hộ nha ^ _ ^
\(x^4+x^3+x^2-1\)
\(=x^2\left(x^2-1\right)+x^2-1\)
\(=\left(x^2+1\right)\left(x^2-1\right)\)
mình chỉ phân tích được đa thức này thôi!
\(x^4+x^2+1\)
\(=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
\(x^4+x^2+1\)
\(=x^4+2x^2+1+x^2-2x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+1-x\right).\left(x^2+1+x\right)\)
Vì phương trình x4+x2+1=0 vô nghiệm nên không thể phân tích thành nhân tử
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Rightarrow x\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
(x + 1)2 = x + 1
⇒ (x + 1)2 - (x + 1)= 0
⇒ (x + 1) . (x + 1 - 1) =0
⇒ (x + 1) . x = 0
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\end{matrix}\right.\)