K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2015

Dùng biến đổi tương đương chứng minh được :

( x+ x+2)= x4 + 2x3 + 5x2 +4x+4 > x4 +2x3 +2x2 +x+3 > x+ 2x3 +x2 = ( x2 +x)

=) x4 +2x3 +2x2 +x+3 = ( x+x+1) (=) x4 +2x3 +2x2 +x+3 = x4 +2x3 +3x2 +2x+1 

(=) x+x-2=0 (=) x=1 hoặc x=-2

25 tháng 4 2020

Đặt: \(y^2=\) \(x^4+\left(x+1\right)^3-2x^2-2x\)

\(x^4+x^3+x^2+x+1\) là số chính phương 

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có: 

\(4y^2=4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

\(4y^2=4x^4+4x^3+4x^2+4x+4\le4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\orbr{\begin{cases}4y^2=\left(2x^2+x+2\right)^2\\4y^2=\left(2x^2+x+1\right)^2\end{cases}}\)

TH1: \(4y^2=\left(2x^2+x+2\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+9x^2+4x+4\)

<=> \(x=0\)thỏa mãn

Th2: \(4y^2=\left(2x^2+x+1\right)^2\)

hay \(4x^4+4x^3+4x^2+4x+4=4x^4+5x^2+1+4x^3+2x\)

<=> \(x^2-2x-3=0\)

<=> x = 3 hoặc x = -1. thử lại thỏa mãn 

Vậy x = 0 ; x = -1 hoặc x = 3

28 tháng 2 2020

\(x^4+2x^3+2x^2+x+3\)

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>x^4+2x^3+x^2\)

\(=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy.......

4 tháng 6 2018

a/ ta có: 

\(x\sqrt{2y-1}+y\sqrt{2x-1}=\sqrt{x}.\sqrt{2xy-x}+\sqrt{y}.\sqrt{2xy-y}\)

\(\le\frac{x+2xy-x}{2}+\frac{y+2xy-y}{2}=2xy\)

Dấu = xảy ra khi ...

4 tháng 6 2018

Khi gì

21 tháng 12 2016

Bạn tham khảo bài này, có dạng tương tự.

http://olm.vn/hoi-dap/question/776690.html

21 tháng 12 2016

Ta có

\(x^4+x^3+x^2+x+1=y^2\)

\(\Leftrightarrow4y^2=4x^4+4x^3+4x^2+4x+4\)cũng là số chính phương

Ta thấy rằng

\(4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)

Và 

\(4x^4+4x^3+4x^2+4x+4< 4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2< \left(2x^2+x+2\right)^2\)

\(\Rightarrow4y^2=\left(2x^2+x+1\right)^2\)

\(\Leftrightarrow4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+5x^2+2x+1\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

22 tháng 5 2016

1)Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 

(xy-1) chia hết (x3+x) => (xy-1) chia hết x(x2+1) (1) 

Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d chia hết x => d chia hết xy => d chia hết 1). 

Nên từ (1) ta có: 

(xy-1) chia hết (x2+1) 

=> (xy-1) chia hết (x2+1+xy -1) => (xy-1) chia hết (x2+xy) => (xy-1) chia hết x(x+y) => (xy-1) chia hết (x+y) 

Điều đó có nghĩa là tồn tại z \(\in\) N* sao cho: 

x+y = z(xy-1) <=> x+y+z =xyz (2) 

Do vai trò bình đẳng nên ta giả sử: x \(\ge\) y \(\ge\) z. 

Từ (2) ta có: x+y+z \(\le\) 3x => 3x \(\ge\) xyz => 3 \(\ge\) yz \(\ge\) z2 => z=1 

=> 3 \(\ge\) y => y \(\in\) {1;2;3} 

Nếu y=1: x+2 =x (loại) 

Nếu y=2: (2) trở thành x+3 =2x => x=3 

Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x\(\ge\)y) 

Vậy khi x \(\ge\) y \(\ge\) z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)

2)\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}=-4x^2+4x+2\)

\(\Leftrightarrow\sqrt{12x^2-12x+7}+\sqrt{8x^2-8x+3}+4x^2-4x-2=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

22 tháng 5 2016

cách làm đúng nhưng đoạn đầu của bài 1 bị ngược rồi ạ

1 tháng 8 2017

Đặt \(\sqrt{199-x^2-2x}+2=4n^2\)

\(4n^2=\sqrt{199-x^2-2x}+2=\sqrt{200-\left(x+1\right)^2}+2\)

\(\le\sqrt{200}+2< 17\)

\(\Rightarrow-2\le n\le2\)

Thế n vô tìm được x. Chọn giá trị thỏa mãn là xong