Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{7-x}{x-2}\inℤ\) thì \(\left(7-x\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left[-1\left(7-x\right)\right]⋮\left(x-2\right)\)
\(\Leftrightarrow\left[x-7\right]⋮\left(x-2\right)\)
\(\Leftrightarrow\left[x-2-5\right]⋮\left(x-2\right)\)
Vì \(\Leftrightarrow\left[x-2\right]⋮\left(x-2\right)\) nên \(\Leftrightarrow5⋮\left(x-2\right)\)
hay \(x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng:
\(x-2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(3\) | \(1\) | \(7\) | \(-3\) |
Vậy \(x\in\left\{1;\pm3;7\right\}\)
b) Để \(\frac{x+8}{3-x}\inℤ\) thì \(\left(x+8\right)⋮\left(3-x\right)\)
\(\Leftrightarrow\left[-1\left(x+8\right)\right]⋮\left(3-x\right)\)
\(\Leftrightarrow\left[8-x\right]⋮\left(3-x\right)\)
\(\Leftrightarrow\left[5+3-x\right]⋮\left(3-x\right)\)
Vì \(\left[3-x\right]⋮\left(3-x\right)\) nên \(5⋮\left(3-x\right)\)
Lập bảng như câu a)
Ta có : \(\frac{x}{7}\)=\(\frac{x+16}{35}\)<=> 35x=7(x+16)
<=>35x=7x+112
<=>35x-7x=112
<=>28x =112
<=> x = 4
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
\(\frac{x+2}{3}=\frac{2x-1}{5}\)
=> \(\left(x+2\right)\cdot5=3\left(2x-1\right)\)
=> \(5x+10=6x-3\)
=> \(6x-5x=10+3\)
=> \(x=13\)
\(\frac{-x}{4}=\frac{-9}{x}\)
=> \(-x^2=4\cdot\left(-9\right)\)
=> \(-x^2=-36\)
=> \(x^2=36\)
=> \(\orbr{\begin{cases}x^2=6^2\\x^2=\left(-6\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
Quỳnh ơi, chuyển 6x sang sẽ là -6x mà viết như cậu phải là -6x+5x :)
a, \(\frac{x+2}{3}=\frac{2x-1}{5}\)
\(\Leftrightarrow\frac{5x+10}{15}=\frac{6x-3}{15}\Leftrightarrow5x+10=6x-3\Leftrightarrow-x+13=0\Leftrightarrow x=-13\)
b, \(\frac{-x}{4}=\frac{-9}{x}\)\(\Leftrightarrow x^2=36\Leftrightarrow x=\pm6\)
Giải theo kiểu lớp 8 nhé :)
Điều kiện xác định : \(x\ne-1\)
Ta có :
\(A=\frac{x^2-1}{x+1}=\frac{x^2-1^2}{x+1}=\frac{\left(x+1\right)\left(x-1\right)}{x+1}=x-1\)
Để A nguyên thì \(x-1\) phải nguyên mà \(1\) là số nguyên suy ra \(x\) nguyên
Vậy để \(A\inℤ\) thì \(x\inℤ\) và \(x\ne-1\)
Chúc bạn học tốt ~
\(\frac{n+5}{n}=1+\frac{5}{n}\)
=> n thuộc Ư(5) = { -5 ; -1 ; 1 ; 5 }
\(\frac{n-2}{4}\)=> n - 2 thuộc B(4) = { 0 ; 4 ; 8 ; 12 ; 16 ; ... }
=> n thuộc { 2 ; 6 ; 10 ; 14 ; 18 ; ... }
\(\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
=> n + 2 thuộc Ư(3) = { -3 ; -1 ; 1 ; 3 }
=> n thuộc { -5 ; -3 ; -1 ; 1 }
A=3n+4/n-1=3n-3+7/n-1=3(n-1)/n-1+7/n-1=3+7/n-1. Vì A nguyên, 3 nguyên nên 7/n-1 nguyên => n-1 E Ư(7)
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
b/6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1-5/3n+1=2-5/3n+1=>3n+1 E Ư(5)
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2/3 | 4/3 | -2 |
Tim gia tri n thuoc N, biet : 2n2 + 1/n2 - 1 de A nhan gia tri nguyen
\(a,\frac{x-3}{x+4}=\frac{x+4-7}{x+4}=1-\frac{7}{x+4}\\ \Rightarrow x+4\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)
\(b,\frac{3x-15}{x-4}=\frac{3x-12-3}{x-4}=3-\frac{3}{x-4}\\ \Rightarrow x-4\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(c,\frac{2x+11}{x+3}=\frac{2x+6+5}{x+3}=2+\frac{5}{x+3}\\ \Rightarrow x+3\inƯ\left(5\right)=\left\{-1;5;-5;1\right\}\)
\(d,\frac{x+5}{x-2}=\frac{x-2+7}{x-2}=1+\frac{7}{x-2}\\ \Rightarrow x-2\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)