Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức trên có giá trị nguyên tức là 5x+7 chia hết cho 2x+1 => 2(5x+7) chia hết cho 2x+1
\(\frac{2\left(5x+7\right)}{2x+1}=\frac{10x+14}{2x+1}=\frac{\left(10x+5\right)+9}{2x+1}=\frac{5\left(2x+1\right)+9}{2x+1}=5+\frac{9}{2x+1}.\)
Để biểu thức trên có giá trị nguyên thì 9 phải chia hết cho 2x+1 tức là 2x+1 phải là ước của 9
=> 2x+1={-1;-3;-9; 1; 3; 9} từ các gá trị của 2x+1 sẽ tính được các giá trị của x
\(A=\frac{2x-6}{x-1}\)
\(\Leftrightarrow A=\frac{2x-2-4}{x-1}=2-\frac{4}{x-1}\)
Để \(A\in Z\)thì \(\frac{4}{x-1}\in Z\)
\(\Rightarrow\left(x-1\right)\inƯ_4=\left(\pm1;\pm2;\pm4\right)\)
\(\Rightarrow x=\left\{2;3;5;0;-1;-3\right\}\)
Vậy ..........
\(a=\frac{2x+4}{x-3}=\frac{2x-6+6+4}{x-3}=\frac{2x-6+10}{x-3}=\frac{2x-6}{x-3}+\frac{10}{x-3}=\)\(2+\frac{10}{x-3}\) Vay de 2x+4 /x-3 la so nguyen thi 2+10/x-3 phai la so nguyen hay 10/x-3 la so nguyen Suy ra x-3 thuoc uoc cua 10=(1;-1;2;-2;5;-5;10;-10) Roi giai ra tung truong hop
Bài A:
=>17\(⋮\) x-13
x-13\(\in\) Ư(17)
x-13=1
x=13+1
x=14
x-13=17
x=17+13
x=30
bạn tự làm tiếp nha
\(a,\frac{x+22}{x+1}\inℤ\Leftrightarrow x+22⋮x+1\)
\(\Rightarrow x+1+21⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow21⋮x+1\)
\(\Rightarrow x+1\inƯ\left(21\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow x\in\left\{-2;0;-4;2;-8;6;-22;20\right\}\)
vậy___
\(b,\frac{3x+1}{2x+1}\inℤ\Leftrightarrow3x+1⋮2x+1\)
\(\Rightarrow2\left(3x+1\right)⋮2x+1\)
\(\Rightarrow6x+2⋮2x+1\)
\(\Rightarrow6x+2+1-1⋮2x+1\)
\(\Rightarrow6x+3-1⋮2x+1\)
\(\Rightarrow3\left(2x+1\right)-1⋮2x+1\)
\(3\left(2x+1\right)⋮2x+1\)
\(\Rightarrow1⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(1\right)\)
đến đây lm như phần a
\(c,\frac{2x+1}{6-n}\inℤ\Leftrightarrow2x+1⋮6-n\)
\(\Rightarrow2x+1+11-11⋮6-n\)
\(\Rightarrow2x+12-11⋮6-n\)
\(\Rightarrow2\left(x+6\right)-11⋮6-n\)
\(2\left(x+6\right)⋮6-n\)
\(\Rightarrow11⋮6-n\)
tự lm tp
phần c thì k chắc lắm
a) Đặt \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}=1-\frac{3}{x+3}\)
Để A nguyên thì \(\frac{3}{x+3}\) nguyên => \(3⋮x+3\)
=> \(x+3\in\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{-2;-4;0;-6\right\}\)
Vậy \(x\in\left\{-2;-4;0;-6\right\}\)
b) Đặt \(B=\frac{x-1}{2x+1}\)
Để B nguyên thì 2B nguyên
Ta có:
\(2B=\frac{2.\left(x-1\right)}{2x+1}=\frac{2x-2}{2x+1}=\frac{2x+1-3}{2x+1}=\frac{2x+1}{2x+1}-\frac{3}{2x+1}=1-\frac{3}{2x+1}\)
Để 2B nguyên thì \(\frac{3}{2x+1}\) nguyên => \(3⋮2x+1\)
=> \(2x+1\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{0;-2;2;-4\right\}\)
=> \(x\in\left\{0;-1;1;-2\right\}\)
Vậy \(x\in\left\{0;-1;1;-2\right\}\)