K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

giải bất phương trình

a: =>-4x>16

=>x<-4

c: =>20x-25<=21-3x

=>23x<=46

=>x<=2

d: =>20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)

=>40x-100-90x+30<36-12x-30x+15

=>-50x-70<-42x+51

=>-8x<121

=>x>-121/8

a: \(Q=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)

b: |x|=1/3 thì x=1/3 hoặc x=-1/3

Khi x=1/3 thì \(Q=\left(\dfrac{1}{3}\right)^2:\left(\dfrac{1}{3}-1\right)=-\dfrac{1}{6}\)

Khi x=-1/3 thì \(Q=\left(-\dfrac{1}{3}\right)^2:\left(-\dfrac{1}{3}-1\right)=-\dfrac{1}{12}\)

c: Để Q là số nguyên thì \(x^2-1+1⋮x-1\)

=>\(x-1\in\left\{1;-1\right\}\)

=>x=2

d: Để Q=4 thì x^2=4x-4

=>x=2

3 tháng 4 2018

a) 3x-7>4x+2

\(\Leftrightarrow3x-4x>2+7\)

\(\Leftrightarrow-x>9\Leftrightarrow x< -9\)

Vậy S={x<9|x\(\in R\)}

b) 2(x-3)<3-5(2x-1)+4x

\(\Leftrightarrow2x-6< 3-10x+5+4x\)

\(\Leftrightarrow2x+10x-4x< 3+5+6\)

\(\Leftrightarrow8x< 14\Leftrightarrow x< \dfrac{7}{4}\)

Vậy S={x<\(\dfrac{7}{4}\)|x\(\in R\)}

c) (x-2)2+x(x-3)<2x(x-3)+1

\(\Leftrightarrow x^2-4x+4+x^2-3x< 2x^2-6x+1\)

\(\Leftrightarrow-x< -3\)

\(\Leftrightarrow x>3\)

Vậy S =\(\left\{x>3|x\in R\right\}\)

d) \(\dfrac{x-1}{3}-x+1>\dfrac{2x-3}{2}\)

\(\Leftrightarrow2x-2-6x+6>6x-9\)

\(\Leftrightarrow-10x>-13\Leftrightarrow x< \dfrac{13}{10}\)

Vậy S=\(\left\{x< \dfrac{13}{10}|x\in R\right\}\)

Biểu diễn tập nghiệm thì bạn tự làm

12 tháng 8 2018

a) Rút gọn :

P = \(\left(\dfrac{2x}{x+3}+\dfrac{10}{x-3}-\dfrac{2x^2+14}{x^2-9}\right):\dfrac{4}{x+3}\)

\(ĐKXĐ:\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

Ta có : \(P=\left[\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{10\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2x^2+14}{\left(x+3\right)\left(x-3\right)}\right].\dfrac{x+3}{4}\)

\(P=\dfrac{2x^2-6x+10x+30-2x^2-14}{\left(x+3\right)\left(x-3\right)}.\dfrac{x+3}{4}\)

\(P=\dfrac{4x+16}{4x-13}=\dfrac{x+4}{x-3}\)

b) |x| = 3 => \(\left\{{}\begin{matrix}\left|x\right|=3khix\ge0\\\left|x\right|=-3khix< 0\end{matrix}\right.\)

* TH1 : x \(\ge0\)

\(P=\dfrac{x+4}{x-3}=\dfrac{3+4}{3-3}\left(koTMvìmẫu\ne0\right)\)

* TH2 : x < 0

\(P=\dfrac{x+4}{x-3}=\dfrac{-3+4}{-3-3}=\dfrac{-1}{6}\left(Tm\right)\)

c) Để P = \(\dfrac{-1}{2}\) thì :

\(\dfrac{x+4}{x-3}=\dfrac{-1}{2}\)

\(\Leftrightarrow2x+8=3-x\)

\(\Leftrightarrow2x+x=-8+3\)

\(\Leftrightarrow3x=-5\Rightarrow x=\dfrac{-5}{3}\)

d) P \(\le\) 2

<=> \(\dfrac{x+4}{x-3}\le2\)

\(\Leftrightarrow\dfrac{x+4}{x-3}-\dfrac{2x-6}{x-3}\le0\)

\(\Leftrightarrow\dfrac{10-x}{x-3}\le0\)

Lập bang xét dấu và tìm x nhé!!

11 tháng 2 2018

a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)

\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)

\(\Leftrightarrow6x+6+12x-8=x-7\)

\(\Leftrightarrow6x+12x-x=-7-6+8\)

\(\Leftrightarrow17x=-5\)

\(\Leftrightarrow x=\dfrac{-5}{17}\)

Vậy .........................

b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)

\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)

\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)

\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)

\(\Leftrightarrow2x^2-x^2+x+15-21=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2-2x+3x-6=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)

Vậy \(S=\left\{2\right\}\)

d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)

Vậy .........................

P/s: các câu còn lại tương tự, bn tự giải nha

12 tháng 2 2018

làm hộ mình câu còn lại đi :))

23 tháng 2 2019

a) Đk : \(x\ne0;\ne1\)

\(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=\dfrac{2\left(x^2+x-1\right)}{x\left(x+1\right)}\)

\(\Rightarrow\dfrac{x^2+3x}{x\left(x+1\right)}+\dfrac{x^2-x-2}{x\left(x+1\right)}-\dfrac{2x^2+2x-2}{x\left(x+1\right)}=0\)

\(\Rightarrow\dfrac{x^2+3x+x^2-x-2-2x^2-2x+2}{x\left(x-1\right)}=0\)

\(\Rightarrow\dfrac{0}{x-1}=0\)

=> Phương trình có vô số nghiệm x

b) Đk : \(x\ne2;x\ne3\)

\(\dfrac{2}{x-2}-\dfrac{x}{x+3}=\dfrac{5x}{\left(x-2\right)\left(x+3\right)}-1\)

\(\Rightarrow\dfrac{2x+6}{\left(x-2\right)\left(x+3\right)}-\dfrac{x^2-2x}{\left(x-2\right)\left(x+3\right)}-\dfrac{5x}{\left(x-2\right)\left(x+3\right)}+\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}\)

=0

\(\Rightarrow\dfrac{2x+6-x^2+2x-5x+x^2+x+6}{\left(x-2\right)\left(x+3\right)}=0\)

\(\Rightarrow\dfrac{12}{\left(x-2\right)\left(x+3\right)}=0\)

=> Phương trình vô nghiệm

c)

\(\Leftrightarrow\dfrac{x^2-x+1}{x^4+x^2+1}-\dfrac{x^2+x+1}{x^4+x^2+1}-\dfrac{1-2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{x^2-x+1-x^2-x-1-1+2x}{x^4+x^2+1}=0\)

\(\Rightarrow\dfrac{-1}{x^4+x^2+1}=0\)

=> PTVN

d) Thôi tự làm đi, câu này dễ :Vvv

e)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)\)=40

\(\Rightarrow\left[\left(x+1\right)\left(x+5\right)\right]\cdot\left[\left(x+2\right)\left(x+4\right)\right]=40\)

\(\Rightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=40\)

Đặt

\(x^2+6x+7=t\)

Phương trình tương đương

\(\left(t-1\right)\left(t+1\right)=40\)

\(t^2=41\)

\(\)\(t=\pm\sqrt{41}\)

Thay vào tìm x.

24 tháng 2 2019

Thanks ;)

4 tháng 7 2017

B3;a,ĐKXĐ:\(x\ne\pm4\)

A=\(\left(\dfrac{4}{x-4}-\dfrac{4}{x+4}\right)\dfrac{x^2+8x+16}{32}=\left(\dfrac{4x+16}{x^2-16}-\dfrac{4x-16}{x^2-16}\right)\dfrac{x^2+2.4x+4^2}{32}=\left(\dfrac{4x+16-4x+16}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\left(\dfrac{32}{x^2-16}\right)\dfrac{\left(x+4\right)^2}{32}=\dfrac{32\left(x+4\right)^2}{32.\left(x-4\right)\left(x+4\right)}=\dfrac{x+4}{x-4}\\ \\ \\ \\ \\ \\ b,Tacó\dfrac{x+4}{x-4}=\dfrac{1}{3}\Leftrightarrow3x+12=x-4\Leftrightarrow x=-8\left(TM\right)c,TAcó\dfrac{x+4}{x-4}=3\Leftrightarrow x+4=3x-12\Leftrightarrow x=8\left(TM\right)\)

28 tháng 10 2018

a)\(\dfrac{2\left(2x-1\right)-\left(2x+1\right)+4}{4x^2-1}\)

\(=\dfrac{4x-2-2x-1+4}{4x^2-1}=\dfrac{2x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{1}{2x-1}\)

câu b đề đúng ko vậy

28 tháng 10 2018

Cam ơn bn nhahaha

28 tháng 3 2018

a) \(ĐKXĐ:x\ne\pm3;x\ne-6\)

Với \(x\ne\pm3;x\ne-6\), ta có:

\(P=\left(\dfrac{x}{x-3}-\dfrac{2}{x+3}+\dfrac{x^2}{9-x^2}\right):\dfrac{x+6}{3x+9}\\ =\left(\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2}{\left(x+3\right)\left(x-3\right)}\right)\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x^2+3x-2x+6-x^2}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{3\left(x+3\right)}{x+6}\\ =\dfrac{3}{x-3}\)

Vậy \(P=\dfrac{3}{x-3}\) với \(x\ne\pm3;x\ne-6\)

b) Ta có: \(2x-\left|4-x\right|=5\)

+) Nếu \(x\le4\Leftrightarrow2x-\left(4-x\right)=5\)

\(\Leftrightarrow2x-4+x=5\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\left(Tm\right)\)

+) Nếu \(x>4\Leftrightarrow2x-\left(x-4\right)=5\)

\(\Leftrightarrow2x-x+4=5\\ \Leftrightarrow x=1\left(Ktm\right)\)

Với \(x\ne\pm3;x\ne-6\)

Khi \(x=3\left(Ktm\right)\rightarrow\text{loại}\)

Vậy khi \(2x-\left|4-x\right|=5\) không có giá trị.

28 tháng 3 2018

c) Với \(x\ne\pm3;x\ne-6\)

Để P nhận giá trị nguyên

thì \(\Rightarrow\dfrac{3}{x-3}\in Z\)

\(\Rightarrow3⋮x-3\\ \Rightarrow x-3\inƯ_{\left(3\right)}\)

\(Ư_{\left(3\right)}=\left\{\pm1;\pm3\right\}\)

Lập bảng giá trị:

\(x-3\) \(-3\) \(-1\) \(1\) \(3\)
\(x\) \(0\left(TM\right)\) \(2\left(TM\right)\) \(4\left(TM\right)\) \(6\left(KTM\right)\)

Vậy để P nhận giá trị nguyên

thì \(x\in\left\{0;2;4\right\}\)

d) Với \(x\ne\pm3;x\ne-6\)

Ta có : \(P^2-P+1=\dfrac{9}{\left(x-3\right)^2}-\dfrac{3}{x-3}+1\)

Đặt \(\dfrac{3}{x-3}=y\)

\(\Rightarrow P^2-P+1=y^2-y+1\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Do \(\left(y-\dfrac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow P^2-P+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall y\)

Dấu "=" xảy ra khi:

\(\left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{3}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow x-3=6\\ \Leftrightarrow x=9\left(TM\right)\)

Vậy \(GTNN\) của biểu thức là \(\dfrac{3}{4}\) khi \(x=9\)

30 tháng 3 2018

Hỏi đáp Toán

30 tháng 3 2018

Dài quá c ơi :<