Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a.Ta có: (x - 1)2 ≥ 0 với mọi x ∈ Z
=> (x - 1)2 + 12 ≥ 12 với mọi x ∈ Z
Dấu "=" xảy ra khi (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
Vậy GTNN của A là 12 tại x = 1.
b. Có: |x + 3| ≥ 0 với mọi x ∈ Z
=> |x + 3| + 2020 ≥ 2020 với mọi x ∈ Z
Dấu "=" xảy ra khi |x + 3| = 0
=> x + 3 = 0
=> x = -3
Vậy GTNN của B là 2020 tại x = -3.
Bài 2.
Có: |3 - x| ≥ 0 với mọi x ∈ Z
=> 20 - |3 - x| ≥ 20 với mọi x ∈ Z
Dấu "=" xảy ra khi |3 - x| = 0
=> 3 - x = 0
=> x = 3
Vậy GTLN của Q là 20 tại x = 3.
1. A = ( x - 1 )2 + 12
\(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\forall x\)
Dấu = xảy ra <=> x - 1 = 0 => x = 1
Vậy AMin = 12 khi x = 1
B = | x + 3 | + 2020
\(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\forall x\)
Dấu = xảy ra <=> x + 3 = 0 => x = -3
Vậy BMin = 2020 khi x = -3
2. ( Bạn LOVE MYSELF sai dấu rồi nhé ... \(\le\)chứ )
Q = 20 - | 3 - x |
\(\left|3-x\right|\ge0\Rightarrow-\left|3-x\right|\le0\)
=> \(20-\left|3-x\right|\le20\forall x\)
Dấu = xảy ra <=> 3 - x = 0 => x = 3
Vậy QMax = 20 khi x = 3
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
`a)(x-1)^2>=0`
`=>(x-1)^2+2008>=2008`
Hay `A>=2008`
Dấu "=" xảy ra khi `x-1=0<=>x=1`
`b)|x+4|>=0`
`=>|x+4|+1996>=1996`
Hay `B>=1996`
Dấu "=" xảy ra khi `x+4=0<=>x=-4`
tìm x nguyên để các biểu thức sau đạt g trị lớn nhất
a,P=4-(x-2)mũ 32 b,Q=20-|3-x| c,C=5/(x-3)mũ 2 +1
\(a)\) Ta có :
\(\left(x-2\right)^{32}\ge0\) ( với mọi x )
\(\Rightarrow\)\(4-\left(x-2\right)^{32}\ge4\)
Dấu "=" xảy ra khi \(x-2=0\)
\(\Rightarrow\)\(x=2\)
Vậy \(P_{min}=4\) khi \(x=2\)
\(b)\) Ta có :
\(\left|3-x\right|\ge0\) \(\left(\forall x\inℤ\right)\)
\(\Rightarrow\)\(20-\left|3-x\right|\ge20\)
Dấu "=" xảy ra khi \(3-x=0\)
\(\Rightarrow\)\(x=3\)
Vậy \(Q_{min}=20\) khi \(x=3\)
Chúc bạn học tốt ~
A = (x-1)2 + 12
Ta có : \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+12\ge12\)
Dấu = xảy ra <=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy MinA = 12 khi x = 1
b) B = | x + 3 | + 2020
Ta có \(\left|x+3\right|\ge0\forall x\Rightarrow\left|x+3\right|+2020\ge2020\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy MinB = 2020 khi x = -3
c) C = 5/x-2
MinC <=> 5/x-2 đạt GTNN <=> x-2 đạt GT âm lớn nhất
=> x - 2 = -1
=> x = 1
Vậy MinC = -5 khi x = 1
d) D = x+5/x-4 = \(\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Để D đạt GTNN => 9/x-4 đạt GTNN => x - 4 đạt GT âm lớn nhất
=> x - 4 = -1
=> x = 3
Vậy MinD = -8 khi x = 3
a. P=2010-(x+1)^2008
(x+1)^2008>_0
<=> -(x+1)^2008<_0
<=>2010-(x+1)^2008<_2010
Vậy GTLN là 2010
b.1010-|3-x|
|3-x| >_0
<=> -|3-x| <_0 <=> 1010-|3-x| <_1010
Vậy GTLN là 1010