Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (Có nhiều cách nhưng mình sẽ làm cách dễ hiểu nhất)
A = \(\frac{19}{x+1}.\frac{x}{6}=\frac{19x}{6.\left(x+1\right)}=\frac{19x}{6x+6}\)
Để A là số nguyên
=) \(19x⋮6x+6\)=) \(6.19x⋮6x+6\)=) \(114x⋮6x+6\)(1)
và \(6x+6⋮6x+6\)=) \(19.\left(6x+6\right)⋮6x+6\)=) \(114x+114⋮6x+6\)(2)
-Từ (1) và (2)
=) \(114x+114-114x⋮6x+6\)
=) \(114⋮6x+6\)=) \(6x+6\inƯ\left(114\right)\)
=) \(6x+6=\left\{1;2;3;6;19;38;57;114\right\}\)( Vì \(x\in N\))
=) \(6x=\left\{-5;-4;-3;0;13;32;51;108\right\}\)
=) \(x=\left\{0;18\right\}\)( Vì \(x\in N\)và \(0,108⋮6\))
Vậy \(x=\left\{0;18\right\}\)thì \(\frac{19}{x+1}.\frac{x}{6}\)là số nguyên
b) Để \(\frac{3n+1}{7}\)có giá trị nhỏ nhất
=) \(3n+1\)nhỏ nhất
=) \(3n\)nhỏ nhất =) \(n\)nhỏ nhất
Mà \(n\in N\)=) \(0\le n\)=) \(n=0\)( Vì \(n\)nhỏ nhất )
=) \(\frac{3n+1}{7}=\frac{3.0+1}{7}=\frac{1}{7}\)
=) \(\frac{3n+1}{7}\)có giá trị nhỏ nhất là \(\frac{1}{7}\)khi và chỉ khi \(n=0\)
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
a/ để A là phân số thì 5x -1 # 0 => 5x#1
b/ để A có giá trị nguyên thì 17 chia hết cho 5x-1
suy ra 5x-1 thuộc ước của 17
ước của 17 là cộng trù 1 , cộng trừ 17
ta có bảng sau
5x-1 | 1 | -1 | 17 | -17 |
5x | 2/5 | 0 | 18/5 | -16 |
x | 2/25 | 0 | 18/25 | -16/5 |
còn lại bạn tự lí luận nhé
mk nè
b)\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
=> n-5 thuộc Ư(7)
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A =15/x+2 + 14/x+2 = 29/x+2
b) x+2 là U(29) = { -1;1;-29;29}
=> x ={ -3;-1;-31;27}
\(a,\frac{x+22}{x+1}\inℤ\Leftrightarrow x+22⋮x+1\)
\(\Rightarrow x+1+21⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow21⋮x+1\)
\(\Rightarrow x+1\inƯ\left(21\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow x\in\left\{-2;0;-4;2;-8;6;-22;20\right\}\)
vậy___
\(b,\frac{3x+1}{2x+1}\inℤ\Leftrightarrow3x+1⋮2x+1\)
\(\Rightarrow2\left(3x+1\right)⋮2x+1\)
\(\Rightarrow6x+2⋮2x+1\)
\(\Rightarrow6x+2+1-1⋮2x+1\)
\(\Rightarrow6x+3-1⋮2x+1\)
\(\Rightarrow3\left(2x+1\right)-1⋮2x+1\)
\(3\left(2x+1\right)⋮2x+1\)
\(\Rightarrow1⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(1\right)\)
đến đây lm như phần a
\(c,\frac{2x+1}{6-n}\inℤ\Leftrightarrow2x+1⋮6-n\)
\(\Rightarrow2x+1+11-11⋮6-n\)
\(\Rightarrow2x+12-11⋮6-n\)
\(\Rightarrow2\left(x+6\right)-11⋮6-n\)
\(2\left(x+6\right)⋮6-n\)
\(\Rightarrow11⋮6-n\)
tự lm tp
phần c thì k chắc lắm
cảm ơn nhé