K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì 2x+1 là số lẻ nên để 2x+1 là số chính phương thì 

\(2x+1=\left(2k+1\right)^2\left(k\in N\right)\)

hay \(x=2k\left(k+1\right)\)

18 tháng 4 2017

Giải:

Dùng biến đổi tương đương chứng minh được:

\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)

\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)

\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)

\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương

18 tháng 4 2017

dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok

22 tháng 3 2015

\(x = 5; x=-3\)

29 tháng 3 2015

Để x^2 - 2x - 14 là số chính pương

<=> x^2 - 2x - 14 = y^2

<=> x^2 - 2x + 1 - 15 = y^2

<=> (x - 1)^2 - 15 = y^2

<=> (x - 1)^2 - y^2 = 15

<=> (x - y - 1)(x + y - 1) = 3*5 = 1*15 = -5*(-3) = -15*(-1)

Vì x - y - 1 < x + y - 1

=> TH1: x - y - 1 = 3 ; x + y - 1 = 5

<=> x - y = 4 ; x + y = 6

<=> x = 5

     TH2: x - y - 1 = 1 ; x + y - 1 = 15

<=> x - y = 2 ; x + y = 16

<=> x = 9

    TH3: x - y - 1 = -5 ; x + y - 1 = -3

<=> x - y = -4 ; x + y = -2

<=> x = -3

    TH4: x - y - 1 = -15 ; x + y - 1 = -1

<=> x - y = -14 ; x + y = 0

<=> x = -7

Vậy x = 5; x = 9; x = -3; x = -7

                                   NHỚ LIKE CHO MÌNH NHÉ! MÌNH CẢM ƠN!

10 tháng 1 2020

4x+37 nha mình gõ nhầm

7 tháng 2 2019

P/s: nói trước là tớ ko chắc đúng đâu nhé ;)

Đặt \(A=x^4-x^2+2x+2\)

\(A=x^2\left(x^2-1\right)+2\left(x+1\right)\)

\(A=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)

\(A=\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(A=\left(x+1\right)\left(x^3-x^2+2\right)\)

\(A=\left(x+1\right)\left(x^3-2x^2+x^2+2\right)\)

\(A=\left(x+1\right)\left[x^2\left(x+1\right)-2\left(x^2-1\right)\right]\)

\(A=\left(x+1\right)\left[x^2\left(x+1\right)-2\left(x-1\right)\left(x+1\right)\right]\)

\(A=\left(x+1\right)\left(x+1\right)\left[x^2-2\left(x-1\right)\right]\)

\(A=\left(x+1\right)^2\left(x^2-2x+2\right)\)

Dễ thấy \(\left(x+1\right)^2\)là số chính phương nên để A là số chính phương thì \(x^2-2x+2\)là số chính phương

Đặt \(x^2-2x+2=k^2\)

\(\Leftrightarrow x^2-2x+1+1-k^2=0\)

\(\Leftrightarrow\left(x-1\right)^2-k^2=-1\)

\(\Leftrightarrow\left(x-k-1\right)\left(x+k-1\right)=-1\)

TH1 :\(\hept{\begin{cases}x-k-1=1\\x+k-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x-k=2\\x+k=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\k=-1\end{cases}}}}\)( thỏa mãn )

TH2 :\(\hept{\begin{cases}x-k-1=-1\\x+k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x-k=0\\x+k=2\end{cases}\Leftrightarrow x=k=1}}\)( thỏa mãn )

Vậy x = 1 thì A là số chính phương

10 tháng 2 2019

bn lm sai bước cuối thì phải

26 tháng 9 2021

Mode 5 3 trên máy tính Casio fx-570 :

a) a=1,b=-2,c=-4

b) a=1,b=-2,c=7 

 

 

 

24 tháng 9 2021

\(a,2x^2+y^2+6x-2xy+9=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+6x+9\right)=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-3\end{matrix}\right.\Leftrightarrow x=y=-3\\ b,A=\left(x-2021\right)^2+\left(x+2022\right)^2=x^2-4042x+2021^2+x^2+4044x+2022^2\\ A=2x^2+2x+2021^2+2022^2\\ A=2\left(x^2+x+\dfrac{1}{4}\right)+2021^2+2022^2-\dfrac{1}{2}\\ A=2\left(x+\dfrac{1}{2}\right)^2+2021^2+2022^2-\dfrac{1}{2}\ge2021^2+2022^2-\dfrac{1}{2}\\ A_{max}=2021^2+2022^2-\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)\(c,P=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\\ P=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\\ P=\left(a^2+8a+11\right)^2-16+16=\left(a^2+8a+11\right)^2\left(Đpcm\right)\)