Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ab= 10a + b
ba=10b + a
=> ab + ba = 10a + b+ 10b + a = 11a + 11b Chia hết cho 11
abc -cba= 100a + 10b + c - 100c -10b -a = ( 100a -a ) + (10b - 10b) + ( 100c - c ) = 99a - 99c chia hết cho 99
a) \(x⋮9;15< x\le80\)
\(\Rightarrow x\in B\left(9\right)\)
\(B\left(9\right)=\left\{0;9;18;27;...;81;90;...\right\}\)
Mà \(15< x\le80\)
\(\Rightarrow x\in\left\{18;27;36;...;72\right\}\)
b) Mình nghĩ đề bài nên đổi thành: \(17-x⋮x+5\)
17 = 22 - 5
Ta có;
\(\left[22-\left(5+x\right)\right]⋮x+5\)
Mà \(5+x⋮x+5\)
\(\Rightarrow22⋮x+5\)
\(\Rightarrow x+5\inƯ\left(22\right)\)
Th1: x + 5 = 1 => loại ( Nếu đề bài là x thuộc N)
Th2: x + 5 = 2 => loại ( ___________________)
Th3: x + 5 = 11
x = 11 - 5
x = 6
Th4: x + 5 = 22
x = 22 - 5
x = 17
Vậy \(x\in\left\{17;6\right\}\)
c) Hihi mình k bt
d) x2 + 2x = 80
=> x.x + 2.x =80
=> x(x+2) = 80
Phân tích 80 ra thừa số nguyên tố ta được
80 = 2.2.2.2.5
= 8 . 10
x và x + 2 là 2 số cách nhau 2 đơn vị
=> x = 8
Chỗ nào chưa "thông" inbox nha ( Đầu óc k đen tối đâu)
bn ko lm bài 3 ak cái bài mà chứng minh S chia hết cho 50 đó
1. \(x⋮12,x⋮10\Rightarrow x\in BC(12,10)\)và -200 < x < 200
Theo đề bài , ta có :
\(12=2^2\cdot3\)
\(10=2\cdot5\)
\(\Rightarrow BCNN(10,12)=2^2\cdot3\cdot5=60\)
\(\Rightarrow BC(10,12)=B(60)=\left\{0;60;-60;120;-120;180;-180;240;...\right\}\)
Mà \(x\in BC(10,12)\)và -200 < x < 200 => \(x\in\left\{0;60;-60;120;-120;180;-180\right\}\)
Học tốt
a) Ta có: \(\hept{\begin{cases}\left(2x+3\right)⋮\left(x-5\right)\\\left(x-5\right)⋮\left(x-5\right)\end{cases}}\Rightarrow\hept{\begin{cases}\left(2x+3\right)⋮\left(x-5\right)\\2\left(x-5\right)=\left(2x-10\right)⋮\left(x-5\right)\end{cases}}\)
=> \(\left(2x+3\right)-\left(2x-10\right)⋮\left(x-5\right)\)
\(\Leftrightarrow13⋮\left(x-5\right)\)
\(\Rightarrow x-5\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{-8;4;6;18\right\}\)
b) Ta có: \(\hept{\begin{cases}\left(3x-2\right)⋮\left(2x+3\right)\\\left(2x+3\right)⋮\left(2x+3\right)\end{cases}\Rightarrow}\hept{\begin{cases}2\left(3x-2\right)=\left(6x-4\right)⋮\left(2x+3\right)\\3\left(2x+3\right)=\left(6x+9\right)⋮\left(2x+3\right)\end{cases}}\)
=> \(6x+9-6x+4⋮\left(2x+3\right)\)
\(\Rightarrow13⋮\left(2x+3\right)\)
\(\Rightarrow2x+3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow2x\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow x\in\left\{-8;-2;-1;5\right\}\)
x2+2x-7 chia hết cho x-2
<=> x2-2x+4x-7 chia hết cho x-2
<=> x(x-2)+4x-7 chia hết cho x-2
<=> 4x-7 chia hết cho x-2
<=> 4x-4-3 chia hết cho x-2
<=> 2(x-2)-3 chia hết cho x-2
<=> 3 chia hết cho x-a
<=> x-2 thuộc Ư(3)={1;-1;3;-3}
<=> x thuộc {3;1;5;-1}.
giải theo cách lớp 7 thì như sau:
3x+2 x-1 3 5
vậy x -1 là ước của 5
=> x - 1 = 5 => x = 5 + 1 = 6
=> x - 1 = -5 => x = -5 + 1 = -4
=> x - 1 = 1 => x = 1 + 1 = 2
=> x - 1 = -1 => x = -1 + 1 = 0
Ta có:
\(x^2+2x-7=x\left(x+2\right)-7\)
Mà \(x\left(x+2\right)\)chia hết cho \(x+2\)
\(\Rightarrow7\)chia hết cho \(x+2\)
hay \(x+2\)\(\in\)Ư(7)
Ta có bảng sau: