Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2=16\)
\(x^2=4^2=\left(-4\right)^2\)
\(x=2\) hoặc \(x=-2\)
\(b,x^3=-8\)
\(x^3=\left(-2\right)^3\)
\(x=-2\)
\(c,\left(x+2\right)^2=4\)
\(\left(x+2\right)^2=2^2=\left(-2\right)^2\)
\(x+2=2\Rightarrow x=0\) hoặc \(x+2=-2\Rightarrow x=-4\)
\(d,\left(1-x\right)^3=1\)
\(1-x=1\)
\(x=0\)
e,phần này mk chưa nghĩ ra,sorry bn nha!
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{15}{32}=2^x\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot32}=2^x\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot15}{\left(2\cdot2\right)\left(2\cdot3\right)\left(2\cdot4\right)\cdot...\cdot\left(2.16\right)}=2^x\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot15}{2^{15}\cdot\left(2\cdot3\cdot4\cdot...\cdot16\right)}=2^x\Rightarrow\dfrac{1}{2^{19}}=2^x\)
\(\Rightarrow2^{-19}=2^x\Rightarrow x=-19\)
1: \(\Leftrightarrow3x+4=2\)
=>3x=-2
=>x=-2/3
2: \(\Leftrightarrow7x-7=6x-30\)
=>x=-23
3: =>\(5x-5=3x+9\)
=>2x=14
=>x=7
4: =>9x+15=14x+7
=>-5x=-8
=>x=8/5
a: \(\Leftrightarrow\dfrac{x+1}{2x+1}=\dfrac{x+4}{2x+6}\)
=>(x+1)(2x+6)=(2x+1)(x+4)
\(\Leftrightarrow2x^2+6x+2x+6=2x^2+8x+x+4\)
=>9x+4=8x+6
=>x=2
b: \(x^2+5x=0\)
=>x(x+5)=0
=>x=0 hoặc x=-5
Lời giải:
Ta có:
\(\text{VT}=\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=\frac{1.2.3....31}{2.4.6.8...64}\)
Xét mẫu số:
\(2.4.6.8.....62.64=(2.1)(2.2)(2.3)(2.4)....(2.31)(2.32)\)
\(=2^{32}(1.2.3....31.32)\)
Suy ra:
\(\text{VT}=\frac{1.2.3....31}{2^{32}.(1.2.3...31.32)}=\frac{1}{2^{32}.32}=\frac{1}{2^{37}}\)
Do đó \(4^x=\frac{1}{2^{37}}\Leftrightarrow 2^{2x}=\frac{1}{2^{37}}\Leftrightarrow 2^{2x+37}=1\)
\(\Leftrightarrow 2x+37=0\Leftrightarrow x=-\frac{37}{2}\)
Vậy \(x=\frac{-37}{2}\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
a) \(-5\cdot\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\cdot\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ -5\cdot x+1-\dfrac{1}{2}\cdot x-\dfrac{1}{3}=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ x\cdot\left(-5-\dfrac{1}{2}\right)+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{3}{2}\cdot x\\ x\cdot\dfrac{-11}{2}+\dfrac{7}{6}=\dfrac{3}{2}\cdot x\\ \dfrac{3}{2}\cdot x-\dfrac{-11}{2}\cdot x=\dfrac{7}{6}\\ x\cdot\left(\dfrac{3}{2}-\dfrac{-11}{2}\right)=\dfrac{7}{6}\\ x\cdot7=\dfrac{7}{6}\\ x=\dfrac{7}{6}:7\\ x=\dfrac{1}{6}\)
Vậy x = \(\dfrac{1}{6}\)
b, \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2^x\\ \dfrac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31}{2^{30}\cdot\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31\right)\cdot64}=2^x\\ \dfrac{1}{2^{30}\cdot2^6}=2^x\\ \dfrac{1}{2^{36}}=2^x\\ 2^{-36}=2^x\\ \Rightarrow x=-36\)
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< =x< =\dfrac{-13}{5}:\dfrac{21}{15}\)
=>-10<=x<=-13/7
hay \(x\in\left\{-10;-9;...;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< =x< =-\dfrac{2}{3}\cdot\dfrac{-11}{12}\)
=>-13/9<=x<=11/18
hay \(x\in\left\{-1;0\right\}\)
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{14}{30}.\dfrac{15}{32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{2\cdot4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow\dfrac{1}{2^{15}\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}.2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy x = 19.