Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{x}{\left(x+2011\right)^2}\)
Với x ≤ 0 => y ≤ 0
Với x > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(x+2011\ge2\sqrt{2011x}\)
⇔ \(\left(x+2011\right)^2\ge8044x\)
⇔ \(\frac{1}{\left(x+2011\right)^2}\le\frac{1}{8044x}\)
⇔ \(\frac{x}{\left(x+2011\right)^2}\le\frac{1}{8044}\)
Đẳng thức xảy ra khi x = 2011
=> yMax = 1/8044 <=> x = 2011
\(2.x^{2011}+2009=x^{2011}+x^{2011}+1+1+...+1\ge2011\sqrt[2011]{x^{4022}}=2011x^2\)
\(tt:2y^{2011}+2009\ge2011x^2;2z^{2011}+2009\ge2011z^2\)
\(\text{Cộng vế theo vế ta được:}6+6027\ge2011\left(x^2+y^2+z^2\right)\Rightarrow2011.3\ge2011M\Rightarrow M\le3\)
\(\Rightarrow M_{max}=3.\text{Dấu "=" xảy ra khi:}x=y=z=1\)
bài này dùng cauchy(chắc phải c/m)
có: x+y-2 căn xy = (cănx - căny)^2 lớn hơn hoặc = 0 =>x+y > hoặc = 2cănxy
2x^2011+2009 lớn hơn hoặc =2011x^2(mình lười rút gọn vế phải sr b)
tg tự(. . .) ta có 2011(x^2+y^2+z^2) nhỏ hơn hoặc =2(x^2011+y^2011+z^2011)+3x2009=6+6027=6033
=>x^2+y^2+z^2 nhỏ hơn hoặc = 3
max m là 3 khi x=y=z=3/3=1
Ta có P đạt giá trị lớn nhất khi \(\frac{1}{P}\) đạt giá trị nhỏ nhất. (Vì x > 0 nên ta có thể viết thành 1/P)
Khi đó : \(\frac{1}{P}=\frac{\left(x+2016\right)^2}{x}=\frac{x^2+4032x+2016^2}{x}=x+\frac{2016^2}{x}+4032\ge2\sqrt{x.\frac{2016^2}{x}}+4032=8064\) (BĐT Cauchy)
Dấu "=" xảy ra khi x = 2016
Vậy 1/P đạt giá trị nhỏ nhất bằng 8064 khi x = 2016
Suy ra P đạt giá trị lớn nhất bằng 1/8064 khi x = 2016
Ta có P=\(\frac{20-x-5\sqrt{x}+4\sqrt{x}}{\sqrt{x}+5}\)
P=\(\frac{\sqrt{x}\left(4-\sqrt{x}\right)+5\left(4-\sqrt{x}\right)}{\sqrt{x}+5}\)
P=\(\frac{\left(\sqrt{x}+5\right).\left(4-\sqrt{x}\right)}{\sqrt{x}+5}\)
P=\(4-\sqrt{x}\)
b) Ta có P=\(4-\sqrt{x}\)\(\le\)4 với mọi x\(\ge0\)
=> P đạt GTLN là 4 khi \(\sqrt{x}=0\)
=> x=0
Lớp 7 nhẩy lên lớp 9
\(\frac{1}{A}=\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
\(\hept{\begin{cases}A\le2\\A\left(\frac{3}{2}\right)=2\end{cases}}\) \(\Rightarrow x=\frac{3}{2}\)
TÌm x > 0 để B = \(\frac{x}{\left(x+2011\right)^2}\)đạt GTLN. Tìm GTLN.