Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x,y,z biết ; /x+20/+/y-11/+/z+2003/ nhỏ hơn hoặc bằng 0
mik đang cần rất gấp ai nhanh mik sẽ tick
Ta có: \(\left|x+20\right|;\left|y-11\right|;\left|z+2003\right|\ge0\)
\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\ge0\)
Theo đề: \(\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|\le0\)
\(\Rightarrow\left|x+20\right|+\left|y-11\right|+\left|z+2003\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x+20\right|=0\\\left|y-11\right|=0\\\left|z+2003\right|=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-20\\y=11\\z=-2003\end{cases}}\)
1/
-20 < x < 21
=> x E { -19 ; -18 ; -17 ; -16 ; -15 ; .... ; 19 ; 20 }
Tổng x :
[ ( -19 ) + 19 ] + [ ( -18 ) + 8 ] + [ ( -17 ) + 17 ] + ... + 0 + 20 = 0 + 0 + 0 + ... + 20 = 20
=> x = 20
a,A=|x-7|+12
Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)
Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7
Vậy GTNN của A là 12 khi x = 7
b,B=|x+12|+|y-1|+4
Vì \(\left|x+12\right|\ge0\forall x\)
\(\left|y-1\right|\ge0\forall y\)
nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)
Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)
Vậy GTNN của B là 4 khi x = -12 và y = 1
a) x.( x+ 3) =0
=> x = 0 hoặc x + 3 = 0
=> x= 0 hoặc x = -3
b) ( x- 2) ( 5 - x) =0
=> x - 2 =0 hoặc 5 - x=0
=> x = 2 hoặc x = 5