Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể có nhiều hơn mà =.= 2 s của mik là 2 nick mik k cho người trả lời dc =.=
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=1\frac{1991}{1993}\)
=> \(\frac{1}{1.\left(1+1\right):2}+\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+\frac{1}{4.\left(4+1\right):2}+...+\frac{1}{x.\left(x+1\right):2}=1\frac{1991}{1993}\)
=> \(\frac{1}{\frac{1.\left(1+1\right)}{2}}+\frac{1}{\frac{2.\left(2+1\right)}{2}}+...+\frac{1}{\frac{x.\left(x+1\right)}{2}}=1\frac{1991}{1993}\)
=> \(\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{x.\left(x+1\right)}=1\frac{1991}{1993}\)
=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=1\frac{1991}{1993}\)
=> \(1-\frac{1}{x+1}=1\frac{1991}{1993}\)
=> \(\frac{1}{x+1}=\frac{-1991}{1993}\)
=> -1991.(x + 1) = 1993
=> -1991x - 1991 = 1993
=> -1991x = 3984
=> x = \(-\frac{3984}{1991}\)
a)Ta có \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)= \(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=) \(x+3=305\)=) \(x=302\)
Ta có:
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{3984}{1993}\)
\(\Rightarrow\frac{1}{2}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}\right)=\frac{1992}{1993}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{1992}{1993}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1992}{1993}\)
\(1-\frac{1}{x+1}=\frac{1992}{1993}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)
\(\Leftrightarrow x+1=1993\)
\(x=1992\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{x\left(x+1\right):2}=1\frac{1994}{1993}\)
\(< =>1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{3987}{1993}\)
\(< =>1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{3987}{1993}\)
\(< =>1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3987}{1993}\)
\(< =>1+2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{3987}{1993}< =>2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{3987}{1993}-1=\frac{1994}{1993}\)
\(< =>\frac{1}{2}-\frac{1}{x+1}=\frac{1994}{1993}:2=\frac{997}{1993}< =>\frac{1}{x+1}=\frac{1}{2}-\frac{997}{1993}=-\frac{1}{3986}\)
<=>x=-3987
\(\Rightarrow\frac{1}{2}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{1}{2}.1\frac{1994}{1993}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{3987}{3986}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{3987}{3986}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{3987}{3986}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{-3986}\)
=> x + 1 = -3986
=> x = -3987