Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\inℤ\) thì \(\left(4x-6\right)⋮\left(2x+1\right)\)
\(\Leftrightarrow\left(4x+2-8\right)⋮\left(2x+1\right)\)
\(\Leftrightarrow\left[2\left(2x+1\right)+8\right]⋮\left(2x+1\right)\)
Vì \(\left[2\left(2x+1\right)\right]⋮\left(2x+1\right)\) nên \(8⋮\left(2x+1\right)\)
\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Mà 2x + 1 lẻ nên \(\Rightarrow2x+1\in\left\{\pm1\right\}\)
Lập bảng:
\(2x+1\) | \(-1\) | 1\(\) |
\(x\) | \(-1\) | \(0\) |
Vậy \(x\in\left\{-1;0\right\}\)
B,C,E tương tự
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
mk làm 2 nha
C = \(\frac{5}{x-2}\)
=> x - 2 là ước của 5 hay 5 chia hết cho x - 2
Ư(5) = { +-1; +-5 }
Có: x - 2 = 1 => x = 1 + 2 = 3
x - 2 = - 1 => x = -1 + 2 = 1
x - 2 = 5 => x = 5 + 2 = 7
x - 2 = -5 => x = -5 + 2 = -3
Để Cmin => x = 1 để x - 2 = -1
=> \(\frac{5}{x-2}=-5\) đạt Cmin khi x = 1
GỌI UCLN[12N+1VAF30N+2] LÀ D
Suy ra 12n+1 chia hết cho d hoặc 30n+2 chia hết cho d suy ra 5.[12n+1] chia hết cho d hoặc 2.[30n+2] chia hết cho d
suy ra 60n+5 chi hết cho d hoặc 60n+2 chia hết cho d
suy ra [60n+5]-[60n+2] chia hết cho d
suy ra 60n+5-60n+2 chia hết cho d suy ra 1 chia hết cho d suy ra d thuộc ước của 1 và -1
vì d là ước chung lớn nhất nên d =1
VẬY PS12n+1/30n+2 là ps tối giản
Để x-9/x+2 là số nguyên thì x-9 \(⋮\)x+2
<=>x+2-11\(⋮\)x+2
Mà x+2 \(⋮\)x+2=>11\(⋮\)x+2
=>x+2EƯ(11)={-1;1;-11;11}
=>xE{-3;-1;-13;9}
Để x-9/x+2 có giá trị là một số nguyên thì ta có:
x-9 chia hết cho x+2
=> x+2-11 chia hết cho x+2
Mà x+2 chia hết cho x+2 => 11 chia hết cho x+2
=> x+2 ϵ Ư(11) = {-1;1;-11;11}
=> x ϵ { -3;-1;-13;9 }
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
Gọi \(d=UCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)
Suy ra phân số đã cho là phân số tối giản (đpcm)
Cái sau tương tự nha bạn
Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1
Vậy với x=1 thì C đạt giá trị nhỏ nhất
Cái sau tương tự nha bạn
a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .
Bài 1:
Gọi UCLN (14n+17;21n+25) là d
ta có: 14 n +17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d
21 +25 chia hết cho d => 2.( 21+25) chia hết cho d => 42n + 50 chia hết cho d
=> 42n + 51 - 42n - 50 chia hết cho d
=> 1 chia hết cho d
=> \(A=\frac{14n+17}{21n+25}\)là phân số tối giản
Bài 2:
Để B đạt giá trị lớn nhất => 5/ (x-3)^2 + 1 = 5
=> (x-3)^2 + 1 = 1
(x-3)^2 = 0 = 0^2
=> x - 3 = 0
x = 3
KL: x = 3 để B đạt giá trị lớn nhất
a) Giả sử \(C=\frac{2x+3}{7}=t\left(t\in Z\right)\)
\(\Rightarrow x=\frac{7t-3}{2}\). Để \(x\in Z\) thì t phải lẻ. Nói cách khác \(t=2k+1\left(k\in Z\right)\)
Suy ra \(x=\frac{7\left(2k+1\right)-3}{2}=14k+2\)
Vậy để \(\frac{2x+3}{7}\in Z\) thì \(x=14k+2\left(k\in Z\right)\)
b) Ta thấy \(C=\frac{6x-1}{3x+2}=\frac{\left(6x+4\right)-5}{3x+2}=2-\frac{5}{3x+2}\)
Do x nguyên nên C đạt GTNN khi \(\frac{5}{3x+2}\) lớn nhất. Điều này xảy ra khi 3x + 2 = 2 hay x = 0.
Vậy \(minC=-\frac{1}{2}\) khi x = 0.
Giải từng bài
Bài 1 :
Ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow\)\(92+4n=120+3n\)
\(\Leftrightarrow\)\(4n-3n=120-92\)
\(\Leftrightarrow\)\(n=28\)
Vậy số cần tìm là \(n=28\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)
Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n
Chúc bạn học tốt ~