Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x-3}{x+4}=\frac{x+4-7}{x+4}=1-\frac{7}{x+4}\\ \Rightarrow x+4\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)
\(b,\frac{3x-15}{x-4}=\frac{3x-12-3}{x-4}=3-\frac{3}{x-4}\\ \Rightarrow x-4\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(c,\frac{2x+11}{x+3}=\frac{2x+6+5}{x+3}=2+\frac{5}{x+3}\\ \Rightarrow x+3\inƯ\left(5\right)=\left\{-1;5;-5;1\right\}\)
\(d,\frac{x+5}{x-2}=\frac{x-2+7}{x-2}=1+\frac{7}{x-2}\\ \Rightarrow x-2\inƯ\left(7\right)=\left\{-1;-7;1;7\right\}\)
Ta có : \(\frac{x}{7}\)=\(\frac{x+16}{35}\)<=> 35x=7(x+16)
<=>35x=7x+112
<=>35x-7x=112
<=>28x =112
<=> x = 4
Giải theo kiểu lớp 8 nhé :)
Điều kiện xác định : \(x\ne-1\)
Ta có :
\(A=\frac{x^2-1}{x+1}=\frac{x^2-1^2}{x+1}=\frac{\left(x+1\right)\left(x-1\right)}{x+1}=x-1\)
Để A nguyên thì \(x-1\) phải nguyên mà \(1\) là số nguyên suy ra \(x\) nguyên
Vậy để \(A\inℤ\) thì \(x\inℤ\) và \(x\ne-1\)
Chúc bạn học tốt ~
a) \(A=\left(x-1\right)^2+2004\)
Vì \(\left(x-1\right)^2\ge0\) nên \(A=\left(x-1\right)^2+2004\ge2004\)
\(\Rightarrow A_{min}\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=0+1\)
\(\Leftrightarrow x=1\)
Vậy Amin = 2014 \(\Leftrightarrow x=1\)
b) \(B=\left|x+4\right|+2014\)
Vì \(\left|x+4\right|\ge0\) nên \(B=\left|x+4\right|+2014\ge2014\)
\(\Rightarrow B_{min}\Leftrightarrow\left|x+4\right|=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=0-4\)
\(\Leftrightarrow x=-4\)
Vậy Bmin = 2014\(\Leftrightarrow x=-4\)
a) x(y-3)-2(y-3)=1+6
(x-2)(y-3)=7
Ta có bảng sau:
x-2 | 1 | 7 | -1 | -7 |
y-3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 10 | 4 | -4 | 2 |
b)6y(x/3-4/y)=1/6 .6y
2xy -24 =y
2xy-y=24
y(2x-1)=24
Mà 2x-1 lẻ
TA có bảng sau
y | 24 | 8 | -24 | -8 |
2x-1 | 1 | 3 | -1 | -3 |
x | 1 | 2 | 0 | -1 |
c)
Ta thấy 5^y là lẻ , 624 chẵn => 2^x lẻ =>x=0
5^y=625
=>y=4
Từ đề bài, ta có :
\(\frac{x}{9}-\frac{1}{18}=\frac{3}{y}\)
\(\Rightarrow\frac{2x-1}{18}=\frac{3}{y}\)
\(\Rightarrow\left(2x-1\right).y=18.3=54\)
Mà \(2x-1\)là số lẻ.
\(\Rightarrow\)Ta có bảng sau :
2x - 1 | 1 | 27 | 9 |
y | 54 | 2 | 6 |
x | 1 | 14 | 5 |
Vậy ta tìm được 3 cặp số ( x;y ) thỏa mãn đề bài là : ( 1;54 ) ; ( 14;2 ) ; ( 5;6 )
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
a) Để \(\frac{7-x}{x-2}\inℤ\) thì \(\left(7-x\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left[-1\left(7-x\right)\right]⋮\left(x-2\right)\)
\(\Leftrightarrow\left[x-7\right]⋮\left(x-2\right)\)
\(\Leftrightarrow\left[x-2-5\right]⋮\left(x-2\right)\)
Vì \(\Leftrightarrow\left[x-2\right]⋮\left(x-2\right)\) nên \(\Leftrightarrow5⋮\left(x-2\right)\)
hay \(x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Lập bảng:
Vậy \(x\in\left\{1;\pm3;7\right\}\)
b) Để \(\frac{x+8}{3-x}\inℤ\) thì \(\left(x+8\right)⋮\left(3-x\right)\)
\(\Leftrightarrow\left[-1\left(x+8\right)\right]⋮\left(3-x\right)\)
\(\Leftrightarrow\left[8-x\right]⋮\left(3-x\right)\)
\(\Leftrightarrow\left[5+3-x\right]⋮\left(3-x\right)\)
Vì \(\left[3-x\right]⋮\left(3-x\right)\) nên \(5⋮\left(3-x\right)\)
Lập bảng như câu a)