Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
P=\(\frac{2.\left|x\right|-1+4}{2.\left|x\right|-1}\)=1+\(\frac{4}{2.\left|x\right|-1}\)
1, Để P có GTLN thì 2.|x| -1 phải dương và có GTNN
Mà |x|>=0 với mọi x nên 2.|x| >=0
=> 2.|x| -1 có giá trị dương nhỏ nhất là 1 khi x=1 hoặc x= -1
=> GTLN của P =1 + 4/1 =1+4=5 khi x=1 hoặc x= -1
2, Đẻ P là số tự nhiên thì \(\frac{4}{2.\left|x\right|-1}\)là số tự nhiên
=> 2.|x| -1 là ước của 4
từ đó tìm ra x
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}\Rightarrow y=2\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{18}=\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\)
\(\Rightarrow2x=28\Rightarrow x=14\)
vậy x = 14
a, \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
\(\Rightarrow\frac{xy}{9y}-\frac{27}{9y}=\frac{1}{9.2}\)
\(\Rightarrow9y=9.2\Rightarrow y=2\)
thay y = 2 vào ta có :
\(\frac{2x}{18}-\frac{27}{18}=\frac{1}{18}\)
\(\Rightarrow2x-27=1\Rightarrow2x=28\Rightarrow x=14\)
b, \(\frac{1}{x}=\frac{y}{2}-\frac{1}{3}\)
\(\Rightarrow\frac{1}{x}=\frac{3y}{6}-\frac{2}{6}\)
\(\Rightarrow\frac{1}{x}=\frac{3y-2}{6}\)
\(\Rightarrow x=6\)
2. \(B=\frac{10n-3}{4n-10}=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)
để \(B\) có giá trị lớn nhất thì \(\frac{22}{4n-10}\) là số dương lớn nhất
=> 4n - 10 là số dương nhỏ nhất ( n thuộc N )
\(\Rightarrow4n-10=2\Rightarrow4n=12\Rightarrow n=3\)
ta có :
\(B=\frac{10n-3}{4n-10}=\frac{30-3}{12-10}=\frac{27}{2}\)
Vậy để \(B\) có giá trị lớn nhất thì \(n=3\)
giá trị lớn nhất của \(B=\frac{27}{2}\)
\(A=\frac{3x-7}{x+3}=\frac{3x+9-9-7}{x+3}=\frac{3\left(x+3\right)-16}{x+3}=3-\frac{16}{x+3}\)
để A đạt GTLN thì \(\frac{16}{x+3}\) nhỏ nhất
=> x + 3 là số nguyên âm lớn nhất
=> x + 3 = -1
=> x = -4
vậy x = -4 và \(max_A=3-\frac{16}{-4+3}=3-\frac{16}{-1}=3-\left(-16\right)=19\)
Để A là phân số => x + 3 khác 0 => x khác - 3 ( 1 )
TA có : A = \(\frac{3x-7}{x+3}\)= \(\frac{3.\left(x+3\right)-16}{x+3}\)= \(\frac{3.\left(x+3\right)}{x+3}-\frac{16}{x+3}\)= 3 - \(\frac{16}{x+3}\)
Để A đạt giá trị lớn nhất thì \(\frac{16}{x+3}\)phải đạt GTNN => x + 3 phải đạt giá trị lớn nhất mà x + 3 thuộc Ư ( 16 ) => x + 3 = 16 => x = 13 ( thỏa mãn 1 )
Vậy x = 13 thì A đạt giá trị lớn nhất