Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{2x+7}\)
Để \(\sqrt{2x+7}\) có nghĩa\(\Leftrightarrow\)2x+7\(\ge\)0
\(\Leftrightarrow\)2x\(\ge\)-7
\(\Leftrightarrow\)x\(\ge\)\(\dfrac{-7}{2}\)
b) \(\sqrt{-3x+4}\)
Để \(\sqrt{-3x+4}\) có nghĩa \(\Leftrightarrow\)-3x+4\(\ge\)0
\(\Leftrightarrow\)-3x\(\ge\)-4
\(\Leftrightarrow\)x\(\le\)\(\dfrac{4}{3}\)
c)\(\sqrt{\dfrac{1}{-1+x}}\)
Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa \(\Leftrightarrow\)\(\dfrac{1}{-1+x}\ge0\)
\(\Leftrightarrow\)-1+x>0
\(\Leftrightarrow\)x>1
d) \(\sqrt{1+x^2}\)
Ta có x2+1\(\ge\)1>0;\(\forall\)x\(\in R\)
Vậy x\(\in R\)
Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)
b) Để A= B
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)
\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)
\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)
Vậy x>3 thì A=B
a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)
ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)
a/ ĐKXĐ: \(x\ge5\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}1-4x\ge0\\x\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le\frac{1}{4}\\x\ne0\end{matrix}\right.\)
c/ ĐKXĐ: \(2x-1\le0\Rightarrow2x\le1\Rightarrow x\le\frac{1}{2}\)
d/ ĐKXĐ: \(2x-1>0\Rightarrow x>\frac{1}{2}\)
88\110
\(\frac{1}{\sqrt{x-1}}\)
a) sai đề