Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức có nghĩa khi :
a) \(\frac{2019}{x^2}\ge0\)( luôn đúng )
b) \(x^4+1\ge0\)( luôn đúng )
c) \(\frac{x^2+1}{1-2x}\ge0\Leftrightarrow1-2x>0\Leftrightarrow x< \frac{1}{2}\)
d) \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
e) \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow-2\le x\le2\)
f) \(\left(3-5x\right)\left(x-6\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3-5x\ge0\\x-6\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-5x\le0\\x-6\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\frac{3}{5}\\x\ge6\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\frac{3}{5}\\x\le6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6\le x\le\frac{3}{5}\left(l\right)\\\frac{3}{5}\le x\le6\left(c\right)\end{matrix}\right.\)
g)h)i)k)l) tương tự, nhiều quá
a, \(x\ge\frac{3}{2}\)
b, với mọi x
c, x khác 0
d,với mọi x
e, x khác 0
a) \(\sqrt{x-2}+\dfrac{1}{x-5}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)
b) \(\sqrt{\left(2x-6\right)\left(7-x\right)}=\sqrt{2\left(x-3\right)\left(7-x\right)}\) có nghĩa khi:
\(\left(x-3\right)\left(7-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3\le0\\7-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le3\\x\ge7\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow3\le x\le7\)
c) \(\sqrt{4x^2-25}=\sqrt{\left(2x-5\right)\left(2x+5\right)}\) có nghĩa khi:
\(\left(2x-5\right)\left(2x+5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\2x+5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x\ge-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{5}{2}\\x\le-\dfrac{5}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{x^2-9}-\sqrt{5-2x}=\dfrac{2}{\left(x+3\right)\left(x-3\right)}-\sqrt{5-2x}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\5-2x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
e) \(\dfrac{x}{x^2-4}+\sqrt{x-2}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}+\sqrt{x-2}\) có nghĩa khi:
\(\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\\x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm2\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow x>2\)
a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :
\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5
b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :
\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)
Ta có bảng xét dấu :
x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +
=> x \(\le-5\) Hoặc x \(\ge3\)
c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :
x - 3 \(\ge\) 0 <=> x \(\ge3\)
\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4
d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :
\(x-1\ge0< =>x\ge1\)
\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)
e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :
\(\dfrac{-3}{x-5}\ge0\)
Mà -3 < 0 nên => x -5 < 0 <=> x < 5
F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :
\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)
Ta có bảng xét dấu :
x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +
=> x \(\le-3\) Hoặc x \(\ge3\)
g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :
x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1
h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :
( x + 2)(x + 3) \(\ge0\)
Ta có bảng xét dấu :
x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +
=> \(x\le-3\) Hoặc x \(\ge-2\)
a )\(\dfrac{\sqrt{3}}{x-5}\)
vì \(\sqrt{3}\) > 0
<=> x-5 >0
=>x > 5