Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
a) \(E=\left(\frac{1}{x+2}+\frac{1}{x-2}\right).\frac{x-2}{x}\left(ĐKXĐ:x\ne0;x\ne\pm2\right)\)
\(=\left(\frac{x-2+x+2}{\left(x+2\right)\left(x-2\right)}\right).\frac{x-2}{x}\)
\(=\frac{2x}{\left(x-2\right)\left(x+2\right)}.\frac{x-2}{x}=\frac{2x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=\frac{2}{x+2}\)
b) Khi x = 6 \(\Rightarrow E=\frac{2}{x+2}=\frac{2}{6+2}=\frac{2}{8}=\frac{1}{4}\)
c) \(E=4\Leftrightarrow\frac{2}{x+2}=4\Leftrightarrow4\left(x+2\right)=2\Leftrightarrow4x+8=2\Leftrightarrow x=\frac{-3}{2}\)
Vậy để E = 4 thì x = -3/2
d) \(E>0\Leftrightarrow\frac{2}{x+2}>0\Leftrightarrow2>0\)
Vậy phương trình vô nghiệm
e) \(E\in Z\Leftrightarrow x+2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Nếu x + 2 = 1 thì x = -1
Nếu x + 2 = -1 thì x = -3
Nếu x + 2 = 2 thì x = 0
Nếu x + 2 = -2 thì x = -4
Vậy ...
Nek bạn giải thích hộ mik tí nữa nhé :Tại sao 2 > 0 thì phương trình lại vô nghiệm ?
\(e)\) \(\left|2x-3\right|=x-1\)
Ta có :
\(\left|2x-3\right|\ge0\)\(\left(\forall x\inℚ\right)\)
Mà \(\left|2x-3\right|=x-1\)
\(\Rightarrow\)\(x-1\ge0\)
\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=x-1\\2x-3=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x=-1+3\\2x+x=1+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\3x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=\frac{4}{3}\)
Chúc bạn học tốt ~
\(f)\) \(\left|x-5\right|-5=7\)
\(\Leftrightarrow\)\(\left|x-5\right|=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}}\)
Vậy \(x=17\) hoặc \(x=-7\)
Chúc bạn học tốt ~
a)Ta có: \(\frac{4x-17}{2x^2+5}=0\)
\(\Leftrightarrow4x-17=0\)
\(\Leftrightarrow4x=17\)
\(\Leftrightarrow x=\frac{17}{4}\)
Vậy: \(x=\frac{17}{4}\)
b) ĐKXĐ: x≠-2
Ta có: \(\frac{\left(x^2-2x\right)-\left(3x+6\right)}{x+2}=0\)
\(\Leftrightarrow x^2-2x-3x-6=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Leftrightarrow x^2+x-6x-6=0\)
\(\Leftrightarrow x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)(tm)
Vậy: x∈{-1;6}
c) ĐKXĐ: x≠3
Ta có: \(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-2\end{matrix}\right.\)
Vậy: x=-2
d) ĐKXĐ: x≠-5
Ta có: \(\frac{2x-5}{x+5}=3\)
⇔\(\frac{2x-5}{x+5}-3=0\)
⇔\(\frac{2x-5}{x+5}-\frac{3\left(x+5\right)}{x+5}=0\)
\(\Leftrightarrow2x-5-3\left(x+5\right)=0\)
\(\Leftrightarrow2x-5-3x-15=0\)
\(\Leftrightarrow-x-20=0\)
\(\Leftrightarrow-\left(x+20\right)=0\)
\(\Leftrightarrow x=-20\)(tm)
Vậy: x=-20
\(a,2x-6< 0\Leftrightarrow2x>6\Leftrightarrow x>3\)
\(b,5x+2x< 4+25\Leftrightarrow7x< 29\Leftrightarrow x< \frac{29}{7}\)
\(c,-5x+6>8-10+8x\Leftrightarrow-5x-8x>8-10-6\)
\(-13x>-8\Leftrightarrow x< \frac{8}{13}\)
\(d,3x-12\le2-4x\Leftrightarrow3x+4x\le2+12\)
\(\Leftrightarrow7x\le14\Leftrightarrow x\le2\)
\(e,\frac{3\left(x-3\right)}{6}>\frac{2\left(2x-5\right)}{6}+\frac{6}{6}\Rightarrow3x-9>4x-10+6\)
\(\Leftrightarrow3x-4x>-4+9\Leftrightarrow x>-5\)
\(f,3\left(2x-3\right)>1+2\left(2+2x\right)\Leftrightarrow6x-9>1+4+4x\)
\(6x-4x>14\Leftrightarrow2x>14\Leftrightarrow x>7\)
Tự biểu diễn nha!
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)
\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x+4}{x-3}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)
\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)
\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
c) Để \(A=\frac{3}{5}\)
\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)
\(\Leftrightarrow5x+20=3x-9\)
\(\Leftrightarrow2x+29=0\)
\(\Leftrightarrow x=-\frac{29}{2}\)
d) Để \(A< 0\)
\(\Leftrightarrow\frac{x+4}{x-3}< 0\)
\(\Leftrightarrow1+\frac{7}{x-3}< 0\)
\(\Leftrightarrow\frac{-7}{x-3}< 1\)
\(\Leftrightarrow-7< x-3\)
\(\Leftrightarrow x>-4\)
e) Để \(A>0\)
\(\Leftrightarrow\frac{x+4}{x-3}>0\)
\(\Leftrightarrow1+\frac{7}{x-3}>0\)
\(\Leftrightarrow\frac{-7}{x-3}>1\)
\(\Leftrightarrow-7>x-3\)
\(\Leftrightarrow x< -4\)