K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Mk ko chắc chắn lắm nên nhờ giúp.

MK nghĩ ntn sai thì góp ý nhá:

Vì căn của 1 số nào đó ko thể âm.

=>-|x-4| ko âm.

Mà |x-4|ko âm.

=>|x-4|ko thể dương.

==>|x-4|=0.

=>x-4=0.

=>x=4.

Vậy x=4.

24 tháng 7 2017

Ừ đúng

19 tháng 6 2017

E mới sắp lên lớp 7 nên cũng ko hiểu lắm,em nghĩ thế này:
Vì GTTĐ của 1 số luôn lớn hơn hoặc =0.

Mà ko thể có căn của 1 số âm(vì 1 số khi mũ 2 lên sẽ đều ko âm).

=>Để căn thức trên có nghĩa =>-|x-1| lớn hơn hoặc =0.

Loại trường hợp lớn hơn 0 và |x-1| luôn lớn hơn hoặc =0.

=>-|x-1|=0.

=>|x-1|=0.

=>x-1=0.

=>x=1.

Vậy x=1.

19 tháng 6 2017

             \(\Rightarrow-\left|x-1\right|=0\)                                                                                                                                                                 \(\Leftrightarrow\left|x-1\right|=0\)                                                                                                                                                                       \(\Leftrightarrow x-1=0\)                                                                                                                                                                          \(\Leftrightarrow x=1\)                                                                                                                                                                                        Vậy X =1                                   

27 tháng 8 2017

a) ta có : \(\sqrt{\left(x-1\right)}.\sqrt{\left(x-3\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge0\\\sqrt{x-3}\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x-3\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge3\end{matrix}\right.\)\(\Rightarrow x\ge3\) vậy \(x\ge3\) thì \(\sqrt{x-1}.\sqrt{x-3}\) có nghĩa

b) ta có : \(\sqrt{\left(x-4\right)\left(x+2\right)}=\sqrt{x-4}.\sqrt{x+2}\) có nghĩa

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-4}\ge0\\\sqrt{x+2}\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\x+2\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\ge-2\end{matrix}\right.\) \(\Rightarrow x\ge4\)

vậy \(x\ge4\) thì \(\sqrt{\left(x-4\right)\left(x+2\right)}\) có nghĩa

19 tháng 6 2017

ĐKXĐ của \(\sqrt{2\left|x\right|-1}\) là \(2\left|x\right|-1\ge0\)

\(\Leftrightarrow2\left|x\right|\ge1\)

\(\Leftrightarrow\left|x\right|\ge\frac{1}{2}\)

\(\Rightarrow\orbr{\begin{cases}x\ge\frac{1}{2}\\x\le-\frac{1}{2}\end{cases}}\)

7 tháng 9 2020

a) \(\sqrt{1-x^2}\) có nghĩa

\(\Leftrightarrow1-x^2\ge0\)

\(\Leftrightarrow\left(1-x\right)\left(x+1\right)\ge0\)

\(\Leftrightarrow-1\le x\le1\)

b) \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa

\(\Leftrightarrow\frac{1}{\left(x-5\right)^2}>0\)

\(\Leftrightarrow x\ne5\)

Vậy .............

7 tháng 9 2020

a) Để \(\sqrt{1-x^2}\)có nghĩa 

    \(\Rightarrow\)\(1-x^2\ge0\)

  \(\Leftrightarrow\)\(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)

   Vì \(\sqrt{x}\ge0\forall x\)\(\Rightarrow\)\(\sqrt{x}+1\ge1>0\forall x\)

   mà \(\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)\ge0\)

   \(\Rightarrow\)\(1-\sqrt{x}\ge0\)

  \(\Leftrightarrow\)\(\sqrt{x}\le1\)

  \(\Leftrightarrow\)\(x\le1\)

Vậy để \(\sqrt{1-x^2}\)có nghĩa thì \(x\le1\)

b) Để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa

    \(\Rightarrow\)\(\sqrt{\frac{1}{\left(x-5\right)^2}}\ge0\)

   \(\Leftrightarrow\)\(\frac{1}{\left|x-5\right|}\ge0\)

   Vì \(1>0\)mà \(\frac{1}{\left|x-5\right|}\ge0\)

   \(\Rightarrow\)\(\left|x-5\right|>0\)( vì là mẫu số )

  \(\Leftrightarrow\)\(x-5>0\)

  \(\Leftrightarrow\)\(x>5\)

 Vậy để \(\sqrt{\frac{1}{\left(x-5\right)^2}}\)có nghĩa thì \(x>5\)

27 tháng 7 2018

\(\sqrt{2x+3}\) có nghĩa khi 

\(2x+3\ge0\)

\(\Leftrightarrow2x\ge-3\)

\(\Leftrightarrow x\ge-\frac{3}{2}\)

Vậy .....

27 tháng 7 2018

1) \(\sqrt{-3x+1}\) có nghĩa \(\Leftrightarrow\sqrt{-3x+1}\ge0\)

\(\Leftrightarrow-3x+1\ge0\Leftrightarrow-3x\ge-1\Leftrightarrow x\le\frac{1}{3}\)

2) \(\sqrt{2x+3}\) có nghĩa \(\Leftrightarrow\sqrt{2x+3}\ge0\Leftrightarrow2x+3\ge0\Leftrightarrow2x\ge-3\Leftrightarrow x\ge\frac{-3}{2}\)

3) \(\sqrt{\frac{-1}{2x+1}}\) có nghĩa \(\Leftrightarrow\sqrt{\frac{-1}{2x+1}}\ge0\Leftrightarrow\frac{-1}{2x+1}\ge0\Leftrightarrow2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< \frac{-1}{2}\)

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP​1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)5. Cho biểu thức:...
Đọc tiếp

ĐỀ KIỂM TRA 1 TIẾT TỔNG HỢP

1. Tính \(\sqrt{6+2\sqrt{8\sqrt{2}-9}}-\sqrt{7-\sqrt{2}}\)  (căn 7 - căn căn 2 ) (1đ)

2. Rút gọn: \(\frac{2\sqrt{2}+2\sqrt{3}+4}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{12}+5}\)(1đ)

3. Rút gọn \(\sqrt{\frac{27\left(m^2-6m+9\right)}{48}}\)với m < 3 (1đ)
4. Tìm GTNN của biểu thức và x tương ứng: \(M=\sqrt{16x^2-8x+2}\)(0,5đ)

5. Cho biểu thức: (2,5đ)
\(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)với x >0, x khác 1 
Hãy tìm x để A có nghĩa rồi:
a/ Rút gọn A
b/ Tìm x biết A =-1 
6. Giai phương trình \(\sqrt{16x-32}-\sqrt{4x-8}+\sqrt{9x-18}=1\)(0,5đ)
7. Giai phương trình \(\sqrt{x^2+2x+6}=x+2\)(0,5đ)
8. Thực hiện phép tính: \(B=\sqrt{5}\left(1-\sqrt{5}\right)+\sqrt{\sqrt{5}+1}.\sqrt{\sqrt{5}-1}\)(0,5đ)
9. Rút gọn biểu thức E = \(\sqrt{\frac{b}{a}}+ab\sqrt{\frac{1}{ab}}-\frac{b}{a}.\sqrt{\frac{a}{b}}\)(0,5đ)
10. Giai phương trình sau: \(\sqrt{4x-12}-\sqrt{25x-75}-\sqrt{x-3}=4-\sqrt{16x-48}\)(0,5đ)
11. Cho biểu thức: \(F=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}-1}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)với a >0, a khác 1
a/ Rút gọn F
b/ Tìm giá trị của a để trị F = -F
 

0
4 tháng 7 2021

a,\(\sqrt{\frac{x-3}{4-x}}\)

Biểu thức trên xác định

 \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)

Vậy biểu thức trên xác định khi \(3\le x< 4\)

b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)

Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)

=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)

                                             \(\Leftrightarrow2x>3\)

                                               \(\Leftrightarrow x>\frac{3}{2}\)

Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)

a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)

\(\Leftrightarrow3\le x< 4\)

b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)

mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)

nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)

\(\Leftrightarrow x>\frac{3}{2}\)