K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

2 tháng 1 2019

1) Để biểu thức \(\sqrt{-2x}\) có nghĩa thì \(-2x\ge0\Leftrightarrow x\le0\)

2) Để biểu thức \(\sqrt{15x}\) có nghĩa thì \(15x\ge0\Leftrightarrow x\ge0\)

3) Để biểu thức \(\sqrt{2x+1}\) có nghĩa thì \(2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge\dfrac{-1}{2}\)

4) Để biểu thức \(\sqrt{3-6x}\) có nghĩa thì \(3-6x\ge0\Leftrightarrow6x\le3\Leftrightarrow x\le\dfrac{1}{2}\)

5) Để biểu thức \(\dfrac{1}{2-\sqrt{x}}\) có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

6) Để biểu thức \(\dfrac{3}{\sqrt{x^2-1}}\) có nghĩa thì \(x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\)\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

7) Ta có \(x^2\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow2x^2+3\ge3>0\)

Vậy với mọi x thì biểu thức 2x2+3 luôn được xác định

8) Ta có \(-x^2\le0\Leftrightarrow-x^2-5\le-5< 0\)

Vậy với mọi x thì biểu thức \(\dfrac{5}{\sqrt{-x^2-2}}\) sẽ không xác định

2 tháng 1 2019

Thank kiu

2 tháng 1 2019

1) Để biểu thức \(\sqrt{-2x+3}\) xác định thì \(-2x+3\ge0\Leftrightarrow-2x\ge-3\Leftrightarrow x\le\dfrac{3}{2}\)

2) Để biểu thức \(\sqrt{\dfrac{2}{x^2}}\) xác định thì \(\left\{{}\begin{matrix}x^2\ge0\\x^2\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ne0\)

3) Để biểu thức \(\sqrt{\dfrac{4}{x+3}}\) xác định thì \(\left\{{}\begin{matrix}x+3\ge0\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-3\\x\ne-3\end{matrix}\right.\)\(\Leftrightarrow x>-3\)

4) Ta có -5<0

x2+6>0

Suy ra \(\dfrac{-5}{x^2+6}< 0\)

Vậy với mọi x thì \(\sqrt{\dfrac{-5}{x^2+6}}\) sẽ không xác định

5) Để biểu thức \(\sqrt{3x+4}\) xác định thì \(3x+4\ge0\Leftrightarrow3x\ge-4\Leftrightarrow x\ge\dfrac{-4}{3}\)

6) Ta có \(x^2\ge0\Leftrightarrow x^2+1\ge1>0\)

Vậy với mọi x thì biểu thức \(\sqrt{1+x^2}\) sẽ luôn xác định

7) Để biểu thức \(\sqrt{\dfrac{3}{1-2x}}\) xác định thì \(\left\{{}\begin{matrix}1-2x\ge0\\1-2x\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2x\le1\\2x\ne1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x< \dfrac{1}{2}\)

8) Để biểu thức \(\sqrt{\dfrac{-3}{3x+5}}\) xác định thì \(\left\{{}\begin{matrix}3x+5\le0\\3x+5\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}3x\le-5\\3x\ne-5\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le\dfrac{-5}{3}\\x\ne\dfrac{-5}{3}\end{matrix}\right.\)\(\Leftrightarrow x< \dfrac{-5}{3}\)

2 tháng 1 2019

Cảm ơn bạn nhìu nha!

14 tháng 6 2017

đk biểu thức trong căn là không âm (với phân số thì kết hợp thêm mẫu khác 0), vậy thôi chứ không khó đâu

25 tháng 8 2018

\(a,\sqrt{2x-1}\)

\(\sqrt{2x-1}\) có nghĩa khi:

\(2x-1\ge0\\ \Leftrightarrow2x\ge1\\ \Leftrightarrow x\ge\dfrac{1}{2}\)

\(b,\sqrt{\dfrac{3}{x^{ }+1}}\)

\(\sqrt{\dfrac{3}{x+1}}\) có nghĩa khi:

\(x+1\ge0\\ \Leftrightarrow x\ge-1\)

\(c,\sqrt{3x^2}\)

\(\forall x\in Rvì3x^2\ge0\)

\(d,\sqrt{\dfrac{3}{x^2}}\\ \forall x\in Rvìx^2\ge0\)

\(e,\sqrt{\dfrac{-1}{x^2+2}}\)

Không có nghĩa \(\forall x\in R\)

\(f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)

\(\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\) có nghĩa khi:

\(\dfrac{2}{3}x-\dfrac{1}{5}\ge0\\ \)

\(\Leftrightarrow\)\(\dfrac{2}{3}x\ge\dfrac{1}{5}\\ \)

\(x\ge\dfrac{1}{10}\)

2 tháng 1 2019

1/ \(x\ge\dfrac{1}{3}\)

2/ \(\forall x\in R\)

3/ \(x\le\dfrac{5}{2}\)

4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)

5/ \(x>2\)

6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)

7/ \(x\ge\dfrac{1}{2}\)

8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)

9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)

10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)

*Căn thức luôn không âm & mẫu chứa căn luôn dương

2 tháng 1 2019

1) Để biểu thức \(\sqrt{3x-1}\)​ có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)

2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)

Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa

3) Để biểu thức \(\sqrt{5-2x}\)​ có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)

4) Để biểu thức ​\(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)

5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\)​ có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)

6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)

Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa

7) Để biểu thức \(\sqrt{2x-1}\)​ có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)

8) Để biểu thức ​\(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\)​ có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)

10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\)​ có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)

3 tháng 6 2018

a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm

Từ đó suy ra căn thức vô nghiệm

Vậy không có giá trị nào của x để biểu thức trên xác định

b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)

Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)

\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)

c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)

Rồi làm như câu b

d) \(\sqrt{\dfrac{2-x}{x+3}}\)

Để biểu thức trên xác định thì

\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)

e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi haha )

\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)

Để biểu thức trên xác định thì \(x\ge0\)\(x-3\ge0\Leftrightarrow x\ge3\)

Bữa sau mình làm tiếp

23 tháng 4 2017

cho hỏi là lớp mấy vậylimdim

23 tháng 4 2017

cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho