K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2021

1)ĐK:`4x^2-12x+9>0`

`<=>(2n-3)^2>0`

`<=>2n-3 ne 0`

`<=>n ne 3/2`

`d)x^2-x+1`

`=(x-1/2)^2+3/4>0AAx`

`=>` bt xd `AAx in RR`

e)ĐK:`x^2-8x+15>0`

`<=>x^2-3x-5x+15>0`

`<=>x(x-3)-5(x-3)>0`

`<=>(x-3)(x-5)>0`

`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)

`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)

`<=>x>5`

`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)

`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)

`<=>x<3`

f)ĐK:`3x^2-7x+20>0`

`<=>x^2-2x+1+2x^2-5x+19>0`

`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng

25 tháng 6 2021

online 24/24 :>

NV
1 tháng 3 2019

a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn

e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)

a: ĐKXD: 3x-1>=0

hay x>=1/3

b: ĐKXĐ: x2-2>=0

hay \(\left[{}\begin{matrix}x>=\sqrt{2}\\x< =-\sqrt{2}\end{matrix}\right.\)

d: ĐKXĐ: 2x-15>0

hay x>15/2

e: ĐKXĐ: (x-1)(x-3)>=0

=>x>=3 hoặc x<=1

25 tháng 8 2018

\(a,\sqrt{2x-1}\)

\(\sqrt{2x-1}\) có nghĩa khi:

\(2x-1\ge0\\ \Leftrightarrow2x\ge1\\ \Leftrightarrow x\ge\dfrac{1}{2}\)

\(b,\sqrt{\dfrac{3}{x^{ }+1}}\)

\(\sqrt{\dfrac{3}{x+1}}\) có nghĩa khi:

\(x+1\ge0\\ \Leftrightarrow x\ge-1\)

\(c,\sqrt{3x^2}\)

\(\forall x\in Rvì3x^2\ge0\)

\(d,\sqrt{\dfrac{3}{x^2}}\\ \forall x\in Rvìx^2\ge0\)

\(e,\sqrt{\dfrac{-1}{x^2+2}}\)

Không có nghĩa \(\forall x\in R\)

\(f,\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\)

\(\sqrt{\dfrac{2}{3}x-\dfrac{1}{5}}\) có nghĩa khi:

\(\dfrac{2}{3}x-\dfrac{1}{5}\ge0\\ \)

\(\Leftrightarrow\)\(\dfrac{2}{3}x\ge\dfrac{1}{5}\\ \)

\(x\ge\dfrac{1}{10}\)

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

17 tháng 6 2018

a) Để : \(\sqrt{3x-2}\) xác định thì :

3x - 2 ≥ 0 ⇔ x ≥ \(\dfrac{2}{3}\)

KL...........

b) Để : \(\sqrt{4-2x}\) xác định thì :

4 - 2x ≥ 0 ⇔ x ≤ 2

KL.......

c) Để : \(\sqrt{-4x}\) xác định thì :

-4x ≥ 0 ⇔ x ≤ 0

KL.......

d) Để : \(\sqrt{x^2-2x+1}\) xác định thì :

x2 - 2x + 1 ≥ 0 ⇔ ( x - 1)2 ≥ 0 ( luôn đúng ∀x)

KL.........

Còn lại tương tự bạn nhé.

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

25 tháng 7 2017

a) Để A có nghĩa \(\Leftrightarrow4x^2-1\ge0\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le-\dfrac{1}{2}\end{matrix}\right.\)

Vậy A có nghĩa khi \(x\ge\dfrac{1}{2}\) hoặc \(x\le-\dfrac{1}{2}\)

b) Ta có 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 > 0 với mọi x.

Vậy B có nghĩa với mọi x

c) Để C có nghĩa \(\Leftrightarrow2x-x^2>0\Leftrightarrow x\left(2-x\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\2-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\2-x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow0< x< 2\)

Vậy C có nghĩa khi 0 < x < 2

d) Để D có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{3}{x}>0\\-3x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}>0\\-3x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không có giá trị nào của x thỏa mãn điều kiện này.

Vậy không có giá trị của x để D có nghĩa