K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

\(b,\)\(\sqrt{\frac{2}{x^2}}\)

Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ

\(\Rightarrow x^2\ne0\)

\(\Rightarrow x\ne0\)

6 tháng 6 2019

a) \(\sqrt{\frac{-5}{x^2+6}}\)

Để biểu thức có nghĩa thì \(x^2+6< 0\)

Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)

Vậy biểu thức này không xác định

a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì

 \(x^2-8x-9\ge0\)

\(\Leftrightarrow x^2+x-9x-9\ge0\)

\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)

\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)

\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)

\(Để\sqrt{4-9x^2}\text{có nghĩa}\)

\(\Rightarrow4-9x^2\ge0\)

\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)

\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)

12 tháng 6 2019

a) \(\sqrt{x+3}+\sqrt{x^2+9}\)

Ta thấy \(x^2\ge0\Rightarrow x^2+9\ge9\Rightarrow\sqrt{x^2+9}\ge3\)(luôn xác định)

Vậy để biểu thức xác định thì \(\sqrt{x+3}\)phải xác định

\(\Rightarrow x+3\ge0\Leftrightarrow x\ge-3\)

Vậy \(ĐKXĐ:x\ge-3\)

12 tháng 6 2019

b) \(\sqrt{\frac{x-1}{x+2}}\)

Để biểu thức trên xác định thì x - 1 và x + 2 cùng dấu

\(TH1:\hept{\begin{cases}x-1>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x>-2\end{cases}}\Rightarrow x>1\)

\(TH1:\hept{\begin{cases}x-1< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -2\end{cases}}\Rightarrow x< -2\)

Vậy \(ĐKXĐ:x>1;x< -2\)

NV
18 tháng 6 2019

a/ \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\) xác định với mọi x

b/ \(\left\{{}\begin{matrix}x+3\ge0\\x+9\ge0\end{matrix}\right.\) \(\Rightarrow x\ge-3\)

c/ \(\left\{{}\begin{matrix}\frac{x-1}{x+2}\ge0\\x+2\ne0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-2\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}x-2\ge0\\x-5\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\ne5\end{matrix}\right.\)

19 tháng 9 2020

Ta có: \(A=\sqrt{x^2-2x+1}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

    \(\Leftrightarrow A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-6\right)^2}\)

    \(\Leftrightarrow A=\left|x-1\right|+\left|x-4\right|+\left|x-6\right|\)

Vì \(\left|a\right|=\left|-a\right|\) \(\Rightarrow\)\(\left|x-6\right|=\left|6-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:

     \(\left|x-1\right|+\left|6-x\right|\ge\left|x-1+6-x\right|=5\)

      \(\Rightarrow\)\(A\ge\left|x-4\right|+5\)

Vì \(\left|x-4\right|\ge0\forall x\)\(\Rightarrow\)\(\left|x-4\right|+5\ge5\forall x\)

      \(\Rightarrow\)\(A\ge5\)

Dấu "=" xảy ra khi:  \(\hept{\begin{cases}\left(x-1\right)\left(6-x\right)>0\\x-4=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}1< x< 6\\x=4\end{cases}}\)

                           \(\Rightarrow x=4\)

Vậy \(A_{min}=5\)\(\Leftrightarrow\)\(x=4\)

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.