Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\sqrt{\dfrac{3}{x-5}}\) có nghĩa thì :
\(\dfrac{3}{x-5}\ge0\) mà 3 > 0 nên => x - 5 > 0 <=> x > 5
b) Để \(\sqrt{\dfrac{x-3}{x+5}}\) có nghĩa thì :
\(\dfrac{x-3}{x+5}\ge0\) ; x \(\ne-5\)
Ta có bảng xét dấu :
x x-3 x+5 (x-3)/(x+5) -5 3 0 0 0 - - + - + + + - +
=> x \(\le-5\) Hoặc x \(\ge3\)
c) Để \(A=\sqrt{x-3}-\sqrt{\dfrac{1}{4-x}}\) có nghĩa thì :
x - 3 \(\ge\) 0 <=> x \(\ge3\)
\(\dfrac{1}{4-x}\ge0\) mà 1 > 0 nên => 4 - x > 0 <=> x < 4
d) Để \(B=\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{x^2-4x+4}}\) = \(\dfrac{1}{\sqrt{x-1}}+\dfrac{2}{\sqrt{\left(x-2\right)^2}}\) có nghĩa thì :
\(x-1\ge0< =>x\ge1\)
\(\dfrac{2}{\left|x-2\right|}\ge0\) Mà 2 > 0 nên => | x - 2 | >0 <=> x -2 \(\ge\) 0 <=> x \(\ge2\)
e) \(\text{Đ}\text{ể}:C=\sqrt{\dfrac{-3}{x-5}}\) có nghĩa thì :
\(\dfrac{-3}{x-5}\ge0\)
Mà -3 < 0 nên => x -5 < 0 <=> x < 5
F) Để \(D=3+\sqrt{x^2-9}\) có nghĩa thì :
\(\sqrt{x^2-9}=\sqrt{\left(x+3\right)\left(x-3\right)}< =>\left(x+3\right)\left(x-3\right)\ge0\)
Ta có bảng xét dấu :
x x+3 x-3 tích 0 0 0 0 - + + - - + -3 3 + - +
=> x \(\le-3\) Hoặc x \(\ge3\)
g) Để \(E=\dfrac{1}{1-\sqrt{x-1}}\) có nghĩa thì :
x -1 \(\ge0\) mà 1 > 0 nên => x - 1 > 0 <=> x > 1
h) Để H = \(\sqrt{x^2+2x+3}=\sqrt{\left(x+2\right)\left(x+3\right)}\) có nghĩa thì :
( x + 2)(x + 3) \(\ge0\)
Ta có bảng xét dấu :
x x+2 x+3 tích -3 -2 0 0 0 0 - - + - + + + - +
=> \(x\le-3\) Hoặc x \(\ge-2\)
a )\(\dfrac{\sqrt{3}}{x-5}\)
vì \(\sqrt{3}\) > 0
<=> x-5 >0
=>x > 5
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2
\(b,\)\(\sqrt{\frac{2}{x^2}}\)
Căn thức xác định \(\Leftrightarrow\frac{2}{x^2}\)thỏa mãn đkxđ
\(\Rightarrow x^2\ne0\)
\(\Rightarrow x\ne0\)
a) \(\sqrt{\frac{-5}{x^2+6}}\)
Để biểu thức có nghĩa thì \(x^2+6< 0\)
Mà \(x^2\ge0\Rightarrow x^2+6\ge6\)(mâu thuẫn)
Vậy biểu thức này không xác định
a, \(x\ge\frac{3}{2}\)
b, với mọi x
c, x khác 0
d,với mọi x
e, x khác 0