K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 5 2018

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~ 

26 tháng 8 2021

kakashi hahahaha

Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên 

=> x - 1 ⋮ x - 3

=> ( x - 3 ) + 2 ⋮ x - 3

Mà x - 3 ⋮ x - 3 ∀ x ∈ Z

=> 2 ⋮ x - 3

=> x - 3 ∈ Ư(2)

Ta có bảng ;

x-3-2-112
x-1245
\(P=\frac{x-1}{x-3}\)\(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên )-1 ( t/m )3 ( t/m )2 ( t/m )

Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4

VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z

=> ( 3 - x )2 - 4 ≥ 0 - 4

=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4

<=> ( 3 - x )2 = 0

<=> 3 - x = 0

<=> x = 3

15 tháng 5 2016

để A\(\in\)Z

=>5 chia hết x-2

=>x-2\(\in\){1,-1,5,-5}

=>x\(\in\){3,1,7,-3}

\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)

=>4 chia hết x-5

=>x-5\(\in\){1,-1,2,-2,4,-4}

=>x\(\in\){6,4,7,3,9,1}

B tương tự nhé

16 tháng 5 2016

bạn làm sai rồi

giá trị nhỏ nhất lớn nhất mà chưa học à

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.

7 tháng 4 2017

ta có \(\left(x-3\right)^2\ge0\forall x\in R\)

\(\left(x-3\right)^2+1\ge1\)

\(\frac{1}{\left(x-3\right)^2+1}\le1\)

\(\frac{5}{\left(x-3\right)^2+1}\le5\)

vậy gtln của bt là 5 khi x = 3