K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

bạn vừa đăng câu này r mà

29 tháng 8 2021

Không có mô tả.

29 tháng 5 2015

\(E=\frac{5-x}{x-2}=\frac{3+2-x}{x-2}=\frac{3-x+2}{x-2}\)\(=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-\frac{x-2}{x-2}=\frac{3}{x-2}-1\)

     E có giá trị nguyên \(\Leftrightarrow\) \(\frac{3}{x-2}-1\) có giá trị nguyên \(\Leftrightarrow\frac{3}{x-2}\) có giá trị nguyên 

\(\Leftrightarrow\) x - 2 \(\in\) Ư(3) \(\Leftrightarrow\) x - 2 \(\in\) {-1 ; 1 ; -3 ; 3}

\(\Leftrightarrow\) x \(\in\) {1 ; 3 ; -1 ; 5}

29 tháng 5 2015

\(E=\frac{5-x}{x-2}=\frac{3-\left(x-2\right)}{x-2}=\frac{3}{x-2}-1\)

Để A có giá trị nguyên thì \(\frac{3}{x-2}\) phải có giá trị nguyên

=> 3 chia hết cho x-2 => \(x-2\inƯ\left(3\right)\Rightarrow x-2\in\left\{-1;1;-3;3\right\}\Rightarrow x\in\left\{1;3;-1;5\right\}\)

Vậy với x= 1 ; x= 3 ; x= -1 ; x= 5 thì Ecó giá trị nguyên

20 tháng 2 2020

a, để A nguyên

=> 7 - x chia hết cho x - 5

=> 5 - x + 2 chia hết cho x - 5

=> -(x - 5) + 2 chia hết cho x - 5

=> 2 chia hết cho x - 5

=> x - 5 thuộc Ư(2)

=> x - 5 thuộc {-1;1-2;2}

=> x thuộc {4; 6; 3; 7}

19 tháng 8 2017

a) \(C=\frac{5}{x-2}\)

=> x-2 thuộc Ư(5) = {-1,-5,1,5}

Ta có bảng :

x-2-1-515
x1-337

Vậy x = {-3,1,3,7}

b) Ta có : \(\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\)

=> x-4 thuộc Ư(9) = {-1,-3,-9,1,3,9}

Ta có bảng :

x-4-1-3-9139
x31-55713

Vậy x = {-5,1,3,5,7,13}

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

1 tháng 6 2015

\(E=\frac{7-x}{x-2}=\frac{5+2-x}{x-2}=\frac{5-x+2}{x-2}=\frac{5-\left(x-2\right)}{x-2}=\frac{5}{x-2}-1\)

 E có giá trị nguyên \(\Leftrightarrow\) \(\frac{5}{x-2}\) có giá trị nguyên \(\Leftrightarrow\) x - 2 \(\in\) Ư(5) \(\Leftrightarrow\) x - 2 \(\in\) {-5 ; -1 ; 1 ; 5}

\(\Leftrightarrow\) x \(\in\) {-3 ; 1 ; 3 ; 7}

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.